TY - JOUR
T1 - X-ray photoelectron spectroscopy of nano-multilayered Zr-O/Al-O coatings deposited by cathodic vacuum arc plasma
AU - Zhitomirsky, V. N.
AU - Kim, S. K.
AU - Burstein, L.
AU - Boxman, R. L.
N1 - Funding Information:
The authors gratefully acknowledge the financial support of the Israel Ministry of Science and Technology and the National Research Foundation of Korea under the Israel-Korea Science and Technology Cooperative Program.
PY - 2010/8/15
Y1 - 2010/8/15
N2 - Nano-multilayered Zr-O/Al-O coatings with alternating Zr-O and Al-O layers having a bi-layer period of 6-7 nm and total coating thickness of 1.0-1.2 μm were deposited using a cathodic vacuum arc plasma process on rotating Si substrates. Plasmas generated from two cathodes, Zr and Al, were deposited simultaneously in a mixture of Ar and O 2 background gases. The Zr-O/Al-O coatings, as well as bulk ZrO 2 and Al 2 O 3 reference samples, were studied using X-ray photoelectron spectroscopy (XPS). The XPS spectra were analyzed on the surface and after sputtering with a 4 kV Ar + ion gun. High resolution angle resolved spectra were obtained at three take-off angles: 15°, 45° and 75° relative to the sample surface. It was shown that preferential sputtering of oxygen took place during XPS of bulk reference ZrO 2 samples, producing ZrO and free Zr along with ZrO 2 in the XPS spectra. In contrast, no preferential sputtering was observed with Al 2 O 3 reference samples. The Zr-O/Al-O coatings contained a large amount of free metals along with their oxides. Free Zr and Al were observed in the coating spectra both before and after sputtering, and thus cannot be due solely to preferential sputtering. Transmission electron microscopy revealed that the Zr-O/Al-O coatings had a nano-multilayered structure with well distinguished alternating layers. However, both of the alternating layers of the coating contained of a mixture of aluminum and zirconium oxides and free Al and Zr metals. The concentration of Zr and Al changed periodically with distance normal to the coating surface: the Zr maximum coincided with the Al minimum and vice versa. However the concentration of Zr in both alternating layers was significantly larger than that of Al. Despite the large free metal concentration, the Knoop hardness, 21.5 GPa, was relatively high, which might be attributed to super-lattice formation or formation of a metal-oxide nanocomposite within the layers.
AB - Nano-multilayered Zr-O/Al-O coatings with alternating Zr-O and Al-O layers having a bi-layer period of 6-7 nm and total coating thickness of 1.0-1.2 μm were deposited using a cathodic vacuum arc plasma process on rotating Si substrates. Plasmas generated from two cathodes, Zr and Al, were deposited simultaneously in a mixture of Ar and O 2 background gases. The Zr-O/Al-O coatings, as well as bulk ZrO 2 and Al 2 O 3 reference samples, were studied using X-ray photoelectron spectroscopy (XPS). The XPS spectra were analyzed on the surface and after sputtering with a 4 kV Ar + ion gun. High resolution angle resolved spectra were obtained at three take-off angles: 15°, 45° and 75° relative to the sample surface. It was shown that preferential sputtering of oxygen took place during XPS of bulk reference ZrO 2 samples, producing ZrO and free Zr along with ZrO 2 in the XPS spectra. In contrast, no preferential sputtering was observed with Al 2 O 3 reference samples. The Zr-O/Al-O coatings contained a large amount of free metals along with their oxides. Free Zr and Al were observed in the coating spectra both before and after sputtering, and thus cannot be due solely to preferential sputtering. Transmission electron microscopy revealed that the Zr-O/Al-O coatings had a nano-multilayered structure with well distinguished alternating layers. However, both of the alternating layers of the coating contained of a mixture of aluminum and zirconium oxides and free Al and Zr metals. The concentration of Zr and Al changed periodically with distance normal to the coating surface: the Zr maximum coincided with the Al minimum and vice versa. However the concentration of Zr in both alternating layers was significantly larger than that of Al. Despite the large free metal concentration, the Knoop hardness, 21.5 GPa, was relatively high, which might be attributed to super-lattice formation or formation of a metal-oxide nanocomposite within the layers.
KW - Al O
KW - Cathodic vacuum arc
KW - Nano-multilayered coating
KW - Vacuum arc deposition
KW - X-ray photoelectron spectroscopy
KW - ZrO
UR - http://www.scopus.com/inward/record.url?scp=77953139312&partnerID=8YFLogxK
U2 - 10.1016/j.apsusc.2010.03.149
DO - 10.1016/j.apsusc.2010.03.149
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:77953139312
SN - 0169-4332
VL - 256
SP - 6246
EP - 6253
JO - Applied Surface Science
JF - Applied Surface Science
IS - 21
ER -