Whole earth telescope observations and seismological analysis of the cool ZZ Ceti star GD 154

B. Pfeiffer*, G. Vauclair, N. Dolez, M. Chevreton, J. R. Fremy, M. Barstow, J. A. Belmonte, S. O. Kepler, A. Kanaan, O. Giovannini, G. Fontaine, P. Bergeron, F. Wesemael, A. D. Grauer, R. E. Nather, D. E. Winget, J. Provencal, J. C. Clemens, P. A. Bradley, J. DixsonS. J. Kleinman, T. K. Watson, C. F. Claver, T. Matzeh, E. M. Leibowitz, P. Moskalik

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

This paper presents the results of high speed photometric observations of the cool variable DA white dwarf (DAV) GD 154 obtained with the Whole Earth Telescope. GD 154 is one of the coolest pulsating DA white dwarfs and its study is important for understanding the red edge of the ZZ Ceti instability strip. Its power spectrum is dominated by three independent modes (P1 = 1186.5s, P2 = 1088.6s and P3 = 402.6s), and their harmonics and linear combinations. None of the half-integer harmonics reported in previous observations were present during the WET campaign. We propose that the observed modes are trapped in the thin outer hydrogen layers. From the resulting identification of the pulsation modes, one derives an estimate of the rotation period (2.3 days) and of the mass of the outer hydrogen layer (2 × 10-10M*).

Original languageEnglish
Pages (from-to)182-190
Number of pages9
JournalAstronomy and Astrophysics
Volume314
Issue number3
StatePublished - 1 Oct 1996

Keywords

  • Stars: individual (GD 154)
  • Stars: interiors
  • Stars: oscillations
  • White dwarfs

Fingerprint

Dive into the research topics of 'Whole earth telescope observations and seismological analysis of the cool ZZ Ceti star GD 154'. Together they form a unique fingerprint.

Cite this