TY - JOUR
T1 - Whole brain and deep gray matter structure segmentation
T2 - Quantitative comparison between MPRAGE and MP2RAGE sequences
AU - Droby, Amgad
AU - Thaler, Avner
AU - Giladi, Nir
AU - Matthew Hutchison, R.
AU - Mirelman, Anat
AU - Bashat, Dafna Ben
AU - Artzi, Moran
N1 - Publisher Copyright:
© 2021 Droby et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/8
Y1 - 2021/8
N2 - Objective T1-weighted MRI images are commonly used for volumetric assessment of brain structures. Magnetization prepared 2 rapid gradient echo (MP2RAGE) sequence offers superior gray (GM) and white matter (WM) contrast. This study aimed to quantitatively assess the agreement of whole brain tissue and deep GM (DGM) volumes obtained from MP2RAGE compared to the widely used MP-RAGE sequence. Methods Twenty-nine healthy participants were included in this study. All subjects underwent a 3T MRI scan acquiring high-resolution 3D MP-RAGE and MP2RAGE images. Twelve participants were re-scanned after one year. The whole brain, as well as DGM segmentation, was performed using CAT12, volBrain, and FSL-FAST automatic segmentation tools based on the acquired images. Finally, contrast-to-noise ratio between WM and GM (CNRWG), the agreement between the obtained tissue volumes, as well as scan-rescan variability of both sequences were explored. Results Significantly higher CNRWG was detected in MP2RAGE vs. MP-RAGE (Mean ± SD = 0.97 ± 0.04 vs. 0.8 ± 0.1 respectively; p<0.0001). Significantly higher total brain GM, and lower cerebrospinal fluid volumes were obtained from MP2RAGE vs. MP-RAGE based on all segmentation methods (p<0.05 in all cases). Whole-brain voxel-wise comparisons revealed higher GM tissue probability in the thalamus, putamen, caudate, lingual gyrus, and precentral gyrus based on MP2RAGE compared with MP-RAGE. Moreover, significantly higher WMprobability was observed in the cerebellum, corpus callosum, and frontal-and-temporal regions in MP2RAGE vs. MP-RAGE. Finally, MP2RAGE showed a higher mean percentage of change in total brain GM compared to MP-RAGE. On the other hand, MP-RAGE demonstrated a higher overtime percentage of change inWMand DGM volumes compared to MP2RAGE. Conclusions Due to its higher CNR, MP2RAGE resulted in reproducible brain tissue segmentation, and thus is a recommended method for volumetric imaging biomarkers for the monitoring of neurological diseases.
AB - Objective T1-weighted MRI images are commonly used for volumetric assessment of brain structures. Magnetization prepared 2 rapid gradient echo (MP2RAGE) sequence offers superior gray (GM) and white matter (WM) contrast. This study aimed to quantitatively assess the agreement of whole brain tissue and deep GM (DGM) volumes obtained from MP2RAGE compared to the widely used MP-RAGE sequence. Methods Twenty-nine healthy participants were included in this study. All subjects underwent a 3T MRI scan acquiring high-resolution 3D MP-RAGE and MP2RAGE images. Twelve participants were re-scanned after one year. The whole brain, as well as DGM segmentation, was performed using CAT12, volBrain, and FSL-FAST automatic segmentation tools based on the acquired images. Finally, contrast-to-noise ratio between WM and GM (CNRWG), the agreement between the obtained tissue volumes, as well as scan-rescan variability of both sequences were explored. Results Significantly higher CNRWG was detected in MP2RAGE vs. MP-RAGE (Mean ± SD = 0.97 ± 0.04 vs. 0.8 ± 0.1 respectively; p<0.0001). Significantly higher total brain GM, and lower cerebrospinal fluid volumes were obtained from MP2RAGE vs. MP-RAGE based on all segmentation methods (p<0.05 in all cases). Whole-brain voxel-wise comparisons revealed higher GM tissue probability in the thalamus, putamen, caudate, lingual gyrus, and precentral gyrus based on MP2RAGE compared with MP-RAGE. Moreover, significantly higher WMprobability was observed in the cerebellum, corpus callosum, and frontal-and-temporal regions in MP2RAGE vs. MP-RAGE. Finally, MP2RAGE showed a higher mean percentage of change in total brain GM compared to MP-RAGE. On the other hand, MP-RAGE demonstrated a higher overtime percentage of change inWMand DGM volumes compared to MP2RAGE. Conclusions Due to its higher CNR, MP2RAGE resulted in reproducible brain tissue segmentation, and thus is a recommended method for volumetric imaging biomarkers for the monitoring of neurological diseases.
UR - http://www.scopus.com/inward/record.url?scp=85112626938&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0254597
DO - 10.1371/journal.pone.0254597
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 34358242
AN - SCOPUS:85112626938
SN - 1932-6203
VL - 16
JO - PLoS ONE
JF - PLoS ONE
IS - 8 August
M1 - e0254597
ER -