TY - GEN
T1 - “Who is Next in Line?” On the Significance of Knowing the Arrival Order in Bayesian Online Settings
AU - Ezra, Tomer
AU - Feldman, Michal
AU - Gravin, Nick
AU - Tang, Zhihao Gavin
N1 - Publisher Copyright:
Copyright © 2023 by SIAM.
PY - 2023
Y1 - 2023
N2 - We introduce a new measure for the performance of online algorithms in Bayesian settings, where the input is drawn from a known prior, but the realizations are revealed one-by-one in an online fashion. Our new measure is called order-competitive ratio. It is defined as the worst case (over all distribution sequences) ratio between the performance of the best order-unaware and order-aware algorithms, and quantifies the loss that is incurred due to lack of knowledge of the arrival order. Despite the growing interest in the role of the arrival order on the performance of online algorithms, this loss has been overlooked thus far. We study the order-competitive ratio in the paradigmatic prophet inequality problem, for the two common objective functions of (i) maximizing the expected value, and (ii) maximizing the probability of obtaining the largest value; and with respect to two families of algorithms, namely (i) adaptive algorithms, and (ii) single-threshold algorithms. We provide tight bounds for all four combinations, with respect to deterministic algorithms. Our analysis requires new ideas and departs from standard techniques. In particular, our adaptive algorithms inevitably go beyond single-threshold algorithms. The results with respect to the order-competitive ratio measure capture the intuition that adaptive algorithms are stronger than single-threshold ones, and may lead to a better algorithmic advice than the classical competitive ratio measure.
AB - We introduce a new measure for the performance of online algorithms in Bayesian settings, where the input is drawn from a known prior, but the realizations are revealed one-by-one in an online fashion. Our new measure is called order-competitive ratio. It is defined as the worst case (over all distribution sequences) ratio between the performance of the best order-unaware and order-aware algorithms, and quantifies the loss that is incurred due to lack of knowledge of the arrival order. Despite the growing interest in the role of the arrival order on the performance of online algorithms, this loss has been overlooked thus far. We study the order-competitive ratio in the paradigmatic prophet inequality problem, for the two common objective functions of (i) maximizing the expected value, and (ii) maximizing the probability of obtaining the largest value; and with respect to two families of algorithms, namely (i) adaptive algorithms, and (ii) single-threshold algorithms. We provide tight bounds for all four combinations, with respect to deterministic algorithms. Our analysis requires new ideas and departs from standard techniques. In particular, our adaptive algorithms inevitably go beyond single-threshold algorithms. The results with respect to the order-competitive ratio measure capture the intuition that adaptive algorithms are stronger than single-threshold ones, and may lead to a better algorithmic advice than the classical competitive ratio measure.
UR - http://www.scopus.com/inward/record.url?scp=85168124332&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85168124332
T3 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
SP - 3759
EP - 3776
BT - 34th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2023
PB - Association for Computing Machinery
T2 - 34th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2023
Y2 - 22 January 2023 through 25 January 2023
ER -