TY - JOUR
T1 - Water productivity mapping using remote sensing data of various resolutions to support "more crop per drop"
AU - Cai, Xueliang
AU - Thenkabail, Prasad S.
AU - Biradar, Chandrashekhar M.
AU - Platonov, Alexander
AU - Gumma, Murali
AU - Dheeravath, Venkateswarlu
AU - Cohen, Yafit
AU - Goldlshleger, Naftali
AU - Ben Dor, Eyal
AU - Alchanatis, Victor
AU - Vithanage, Jagath
AU - Markandu, Anputhas
PY - 2009
Y1 - 2009
N2 - The overarching goal of this research was to map crop water productivity using satellite sensor data at various spectral, spatial, radiometric, and temporal resolutions involving: (a) Moderate Resolution Imaging Spectroradiometer (MODIS) 500m, (b) MODIS 250m, (c) Landsat enhanced thematic mapper plus (ETM+) 60m thermal, (d) Indian Remote Sensing Satellite (IRS) 23.5 m, and (e) Quickbird 2.44 m data. The spectro-biophysical models were developed using IRS and Quickbird satellite data for wet biomass, dry biomass, leaf area index, and grain yield for 5 crops: (a) cotton, (b) maize, (c) winter wheat, (d) rice, and (e) alfalfa in the Sry Darya basin, Central Asia. Crop-specific productivity maps were developed by applying the best spectro-biophysical models for the respective delineated crop types. Water use maps were produced using simplified surface energy balance (SSEB) model by multiplying evaporative fraction derived from Landsat ETM+ thermal data by potential ET. The water productivity (WP) maps were then derived by dividing the crop productivity maps by water use maps. The results of cotton crop, an overwhelmingly predominant crop in Central Asian Study area, showed that about 55% area had low WP of < 0.3 kg/m3, 34% had moderate WP of 0.3-0.4 kg/m3, and only 11% area had high WP > 0.4 kg/m3. The trends were similar for other crops. These results indicated that there is highly significant scope to increase WP (to grow "more crop per drop") through better water and cropland management practices in the low WP areas, which will substantially enhance food security of the ballooning populations without having to increase: (a) cropland areas, and\or (b) irrigation water allocations.
AB - The overarching goal of this research was to map crop water productivity using satellite sensor data at various spectral, spatial, radiometric, and temporal resolutions involving: (a) Moderate Resolution Imaging Spectroradiometer (MODIS) 500m, (b) MODIS 250m, (c) Landsat enhanced thematic mapper plus (ETM+) 60m thermal, (d) Indian Remote Sensing Satellite (IRS) 23.5 m, and (e) Quickbird 2.44 m data. The spectro-biophysical models were developed using IRS and Quickbird satellite data for wet biomass, dry biomass, leaf area index, and grain yield for 5 crops: (a) cotton, (b) maize, (c) winter wheat, (d) rice, and (e) alfalfa in the Sry Darya basin, Central Asia. Crop-specific productivity maps were developed by applying the best spectro-biophysical models for the respective delineated crop types. Water use maps were produced using simplified surface energy balance (SSEB) model by multiplying evaporative fraction derived from Landsat ETM+ thermal data by potential ET. The water productivity (WP) maps were then derived by dividing the crop productivity maps by water use maps. The results of cotton crop, an overwhelmingly predominant crop in Central Asian Study area, showed that about 55% area had low WP of < 0.3 kg/m3, 34% had moderate WP of 0.3-0.4 kg/m3, and only 11% area had high WP > 0.4 kg/m3. The trends were similar for other crops. These results indicated that there is highly significant scope to increase WP (to grow "more crop per drop") through better water and cropland management practices in the low WP areas, which will substantially enhance food security of the ballooning populations without having to increase: (a) cropland areas, and\or (b) irrigation water allocations.
KW - Crop water productivity
KW - IRS
KW - MODIS
KW - Quickbird.
KW - remote sensing
KW - simplified surface energy balance model
KW - spectro-biophysical models
UR - http://www.scopus.com/inward/record.url?scp=77957294368&partnerID=8YFLogxK
U2 - 10.1117/1.3257643
DO - 10.1117/1.3257643
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:77957294368
SN - 1931-3195
VL - 3
JO - Journal of Applied Remote Sensing
JF - Journal of Applied Remote Sensing
IS - 1
M1 - 033557
ER -