Volume regularization for binary classification

Koby Crammer, Tal Wagner

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

We introduce a large-volume box classification for binary prediction, which maintains a subset of weight vectors, and specifically axis-aligned boxes. Our learning algorithm seeks for a box of large volume that contains "simple" weight vectors which most of are accurate on the training set. Two versions of the learning process are cast as convex optimization problems, and it is shown how to solve them efficiently. The formulation yields a natural PAC-Bayesian performance bound and it is shown to minimize a quantity directly aligned with it. The algorithm outperforms SVM and the recently proposed AROW algorithm on a majority of 30 NLP datasets and binarized USPS optical character recognition datasets.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 25
Subtitle of host publication26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Pages332-340
Number of pages9
StatePublished - 2012
Externally publishedYes
Event26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012 - Lake Tahoe, NV, United States
Duration: 3 Dec 20126 Dec 2012

Publication series

NameAdvances in Neural Information Processing Systems
Volume1
ISSN (Print)1049-5258

Conference

Conference26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Country/TerritoryUnited States
CityLake Tahoe, NV
Period3/12/126/12/12

Fingerprint

Dive into the research topics of 'Volume regularization for binary classification'. Together they form a unique fingerprint.

Cite this