TY - JOUR
T1 - Vascular tumors have increased p70 S6-kinase activation and are inhibited by topical rapamycin
AU - Du, Wa
AU - Gerald, Damien
AU - Perruzzi, Carole A.
AU - Rodriguez-Waitkus, Paul
AU - Enayati, Ladan
AU - Krishnan, Bhuvaneswari
AU - Edmonds, Joseph
AU - Hochman, Marcelo L.
AU - Lev, Dina C.
AU - Phung, Thuy L.
N1 - Funding Information:
We thank Laura E Benjamin for helpful input in the work; Vera Krump-Konvalinkova for ASM.5 cells; Michael Cunningham for hemangioma tissues; Gary Horowitz and Laurie Walsh for assistance with rapamycin blood analysis; Keila Torres, Milton Finegold, Cecilia Rosales and Evan Miller for pathology archival specimen collection and clinicopathologic information; Tareq Qdaisat, Rafael Rojano and Isabel Acevedo for excellent technical assistance; and Chad Creighton and Yiqun Zhang for assistance with biostatistical analysis. This work was supported by the National Institutes of Health (K08-HL087008), the American Heart Association (11BGIA5590018), the American Cancer Society (RSG-12-054-01-CSM) and the Dermatology Foundation.
PY - 2013/10
Y1 - 2013/10
N2 - Vascular tumors are endothelial cell neoplasms whose cellular and molecular mechanisms, leading to tumor formation, are poorly understood, and current therapies have limited efficacy with significant side effects. We have investigated mechanistic (mammalian) target of rapamycin (mTOR) signaling in benign and malignant vascular tumors, and the effects of mTOR kinase inhibitor as a potential therapy for these lesions. Human vascular tumors (infantile hemangioma and angiosarcoma) were analyzed by immunohistochemical stains and western blot for the phosphorylation of p70 S6-kinase (S6K) and S6 ribosomal protein (S6), which are activated downstream of mTOR complex-1 (mTORC1). To assess the function of S6K, tumor cells with genetic knockdown of S6K were analyzed for cell proliferation and migration. The effects of topical rapamycin, an mTOR inhibitor, on mTORC1 and mTOR complex-2 (mTORC2) activities, as well as on tumor growth and migration, were determined. Vascular tumors showed increased activation of S6K and S6. Genetic knockdown of S6K resulted in reduced tumor cell proliferation and migration. Rapamycin fully inhibited mTORC1 and partially inhibited mTORC2 activities, including the phosphorylation of Akt (serine 473) and PKCα, in vascular tumor cells. Rapamycin significantly reduced vascular tumor growth in vitro and in vivo. As a potential localized therapy for cutaneous vascular tumors, topically applied rapamycin effectively reduced tumor growth with limited systemic drug absorption. These findings reveal the importance of mTOR signaling pathways in benign and malignant vascular tumors. The mTOR pathway is an important therapeutic target in vascular tumors, and topical mTOR inhibitors may provide an alternative and well-tolerated therapy for the treatment of cutaneous vascular lesions.
AB - Vascular tumors are endothelial cell neoplasms whose cellular and molecular mechanisms, leading to tumor formation, are poorly understood, and current therapies have limited efficacy with significant side effects. We have investigated mechanistic (mammalian) target of rapamycin (mTOR) signaling in benign and malignant vascular tumors, and the effects of mTOR kinase inhibitor as a potential therapy for these lesions. Human vascular tumors (infantile hemangioma and angiosarcoma) were analyzed by immunohistochemical stains and western blot for the phosphorylation of p70 S6-kinase (S6K) and S6 ribosomal protein (S6), which are activated downstream of mTOR complex-1 (mTORC1). To assess the function of S6K, tumor cells with genetic knockdown of S6K were analyzed for cell proliferation and migration. The effects of topical rapamycin, an mTOR inhibitor, on mTORC1 and mTOR complex-2 (mTORC2) activities, as well as on tumor growth and migration, were determined. Vascular tumors showed increased activation of S6K and S6. Genetic knockdown of S6K resulted in reduced tumor cell proliferation and migration. Rapamycin fully inhibited mTORC1 and partially inhibited mTORC2 activities, including the phosphorylation of Akt (serine 473) and PKCα, in vascular tumor cells. Rapamycin significantly reduced vascular tumor growth in vitro and in vivo. As a potential localized therapy for cutaneous vascular tumors, topically applied rapamycin effectively reduced tumor growth with limited systemic drug absorption. These findings reveal the importance of mTOR signaling pathways in benign and malignant vascular tumors. The mTOR pathway is an important therapeutic target in vascular tumors, and topical mTOR inhibitors may provide an alternative and well-tolerated therapy for the treatment of cutaneous vascular lesions.
KW - S6-kinase
KW - angiogenesis
KW - mTOR
KW - rapamycin
KW - vascular tumors
UR - http://www.scopus.com/inward/record.url?scp=84884824282&partnerID=8YFLogxK
U2 - 10.1038/labinvest.2013.98
DO - 10.1038/labinvest.2013.98
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 23938603
AN - SCOPUS:84884824282
SN - 0023-6837
VL - 93
SP - 1115
EP - 1127
JO - Laboratory Investigation
JF - Laboratory Investigation
IS - 10
ER -