TY - JOUR
T1 - Ups!... I did it again
T2 - unveiling the hidden companion in Upsilon Sagittarii, a unique binary system at a second mass transfer stage
AU - Gilkis, Avishai
AU - Shenar, Tomer
N1 - Publisher Copyright:
© 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Upsilon Sagittarii is a hydrogen-deficient binary that has been suggested to be in its second stage of mass transfer, after the primary has expanded to become a helium supergiant following core helium exhaustion. A tentative identification of the faint companion in the ultraviolet led to mass estimates of both components that made the helium star in Upsilon Sagittarii a prototypical immediate progenitor of a type Ib/c supernova. However, no consistent model for the complex spectrum has been achieved, casting doubt on this interpretation. In this study, we provide for the first time a composite spectral model that fits the ultraviolet data, and clearly identifies the companion as a rapidly rotating, slowly moving ≈ 7 M☉ B-type star, unlike previously suggested. The stripped helium supergiant is less luminous than previous estimates, and with an estimated mass of < 1 M☉ is ruled out as a core-collapse supernova progenitor. We provide a detailed binary evolution scenario that explains the temperature and luminosity of the two components as well as the very low gravity (log g ≈ 1) and extreme hydrogen deficiency of the primary (atmospheric mass fraction XH, 1 ≈ 0.001). The best-fitting model is an intermediate-mass primary (MZAMS,1 ≈ 5 M☉) with an initial orbital period of a few days, and a secondary that appears to have gained a significant amount of mass despite its high rotation. We conclude that Upsilon Sagittarii is a key system for testing binary evolution processes, especially envelope stripping and mass accretion.
AB - Upsilon Sagittarii is a hydrogen-deficient binary that has been suggested to be in its second stage of mass transfer, after the primary has expanded to become a helium supergiant following core helium exhaustion. A tentative identification of the faint companion in the ultraviolet led to mass estimates of both components that made the helium star in Upsilon Sagittarii a prototypical immediate progenitor of a type Ib/c supernova. However, no consistent model for the complex spectrum has been achieved, casting doubt on this interpretation. In this study, we provide for the first time a composite spectral model that fits the ultraviolet data, and clearly identifies the companion as a rapidly rotating, slowly moving ≈ 7 M☉ B-type star, unlike previously suggested. The stripped helium supergiant is less luminous than previous estimates, and with an estimated mass of < 1 M☉ is ruled out as a core-collapse supernova progenitor. We provide a detailed binary evolution scenario that explains the temperature and luminosity of the two components as well as the very low gravity (log g ≈ 1) and extreme hydrogen deficiency of the primary (atmospheric mass fraction XH, 1 ≈ 0.001). The best-fitting model is an intermediate-mass primary (MZAMS,1 ≈ 5 M☉) with an initial orbital period of a few days, and a secondary that appears to have gained a significant amount of mass despite its high rotation. We conclude that Upsilon Sagittarii is a key system for testing binary evolution processes, especially envelope stripping and mass accretion.
KW - binaries: close
KW - binaries: spectroscopic
KW - stars: evolution
KW - stars: individual: υ Sagittarii
UR - http://www.scopus.com/inward/record.url?scp=85159361110&partnerID=8YFLogxK
U2 - 10.1093/mnras/stac3375
DO - 10.1093/mnras/stac3375
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85159361110
SN - 0035-8711
VL - 518
SP - 3541
EP - 3555
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 3
ER -