Unsupervised Polyglot Text-to-speech

Eliya Nachmani, Lior Wolf

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We present a TTS neural network that is able to produce speech in multiple languages. The proposed network is able to transfer a voice, which was presented as a sample in a source language, into one of several target languages. Training is done without using matching or parallel data, i.e., without samples of the same speaker in multiple languages, making the method much more applicable. The conversion is based on learning a polyglot network that has multiple per-language sub-networks and adding loss terms that preserve the speaker's identity in multiple languages. We evaluate the proposed polyglot neural network for three languages with a total of more than 400 speakers and demonstrate convincing conversion capabilities.

Original languageEnglish
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7055-7059
Number of pages5
ISBN (Electronic)9781479981311
DOIs
StatePublished - May 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: 12 May 201917 May 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
Country/TerritoryUnited Kingdom
CityBrighton
Period12/05/1917/05/19

Keywords

  • TTS
  • multilingual
  • unsupervised learning

Fingerprint

Dive into the research topics of 'Unsupervised Polyglot Text-to-speech'. Together they form a unique fingerprint.

Cite this