Understanding Transformer Memorization Recall Through Idioms

Adi Haviv, Ido Cohen, Jacob Gidron, Roei Schuster, Yoav Goldberg, Mor Geva

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

To produce accurate predictions, language models (LMs) must balance between generalization and memorization. Yet, little is known about the mechanism by which transformer LMs employ their memorization capacity. When does a model decide to output a memorized phrase, and how is this phrase then retrieved from memory? In this work, we offer the first methodological framework for probing and characterizing recall of memorized sequences in transformer LMs. First, we lay out criteria for detecting model inputs that trigger memory recall, and propose idioms as inputs that typically fulfill these criteria. Next, we construct a dataset of English idioms and use it to compare model behavior on memorized vs. non-memorized inputs. Specifically, we analyze the internal prediction construction process by interpreting the model's hidden representations as a gradual refinement of the output probability distribution. We find that across different model sizes and architectures, memorized predictions are a two-step process: early layers promote the predicted token to the top of the output distribution, and upper layers increase model confidence. This suggests that memorized information is stored and retrieved in the early layers of the network. Last, we demonstrate the utility of our methodology beyond idioms in memorized factual statements. Overall, our work makes a first step towards understanding memory recall, and provides a methodological basis for future studies of transformer memorization.

Original languageEnglish
Title of host publicationEACL 2023 - 17th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages248-264
Number of pages17
ISBN (Electronic)9781959429449
StatePublished - 2023
Event17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023 - Dubrovnik, Croatia
Duration: 2 May 20236 May 2023

Publication series

NameEACL 2023 - 17th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference

Conference

Conference17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023
Country/TerritoryCroatia
CityDubrovnik
Period2/05/236/05/23

Funding

FundersFunder number
Séphora Berrebi Foundation
Canadian Institute for Advanced Research
Horizon 2020 Framework Programme
Government of Ontario
European Commission
Horizon 2020802774
Vector Institute

    Fingerprint

    Dive into the research topics of 'Understanding Transformer Memorization Recall Through Idioms'. Together they form a unique fingerprint.

    Cite this