TY - JOUR
T1 - Unconventional myosins and the genetics of hearing loss
AU - Friedman, Thomas B.
AU - Sellers, James R.
AU - Avraham, Karen B.
PY - 1999/9/24
Y1 - 1999/9/24
N2 - Mutations of the unconventional myosins genes encoding myosin VI, myosin VIIA and myosin XV cause hearing loss and thus these motor proteins perform fundamental functions in the auditory system. A null mutation in myosin VI in the congenitally deaf Snell's waltzer mice (Myo6(sv)) results in fusion of stereocilia and subsequent progressive loss of hair cells, beginning soon after birth, thus reinforcing the vital role of cytoskeletal proteins in inner ear hair cells. To date, there are no human families segregating hereditary hearing loss that show linkage to MYO6 on chromosome 6q13. The discovery that the mouse shaker1 (Myo7(ash1)) locus encodes myosin VIIA led immediately to the identification of mutations in this gene in Usher syndrome type 1B; subsequently, mutations in this gene were also found associated with recessive and dominant nonsyndromic hearing loss (DFNB2 and DFNA11). Stereocilia of sh1 mice are severely disorganized, and eventually degenerate as well. Myosin VIIA has been implicated in membrane trafficking and/or endocytosis in the inner ear. Mutant alleles of a third unconventional myosin, myosin XV, are associated with nonsyndromic, recessive, congenital deafness DFNB3 on human chromosome 17p11.2 and deafness in shaker2 (Myo15(sh2)) mice. In outer and inner hair cells, myosin XV protein is detectable in the cell body and stereocilia. Hair cells are present in homozygous sh2 mutant mice, but the stereocilia are approximately 1/10 of the normal length. This review focuses on what we know about the molecular genetics and biochemistry of myosins VI, VIIA and XV as relates to hereditary hearing loss.
AB - Mutations of the unconventional myosins genes encoding myosin VI, myosin VIIA and myosin XV cause hearing loss and thus these motor proteins perform fundamental functions in the auditory system. A null mutation in myosin VI in the congenitally deaf Snell's waltzer mice (Myo6(sv)) results in fusion of stereocilia and subsequent progressive loss of hair cells, beginning soon after birth, thus reinforcing the vital role of cytoskeletal proteins in inner ear hair cells. To date, there are no human families segregating hereditary hearing loss that show linkage to MYO6 on chromosome 6q13. The discovery that the mouse shaker1 (Myo7(ash1)) locus encodes myosin VIIA led immediately to the identification of mutations in this gene in Usher syndrome type 1B; subsequently, mutations in this gene were also found associated with recessive and dominant nonsyndromic hearing loss (DFNB2 and DFNA11). Stereocilia of sh1 mice are severely disorganized, and eventually degenerate as well. Myosin VIIA has been implicated in membrane trafficking and/or endocytosis in the inner ear. Mutant alleles of a third unconventional myosin, myosin XV, are associated with nonsyndromic, recessive, congenital deafness DFNB3 on human chromosome 17p11.2 and deafness in shaker2 (Myo15(sh2)) mice. In outer and inner hair cells, myosin XV protein is detectable in the cell body and stereocilia. Hair cells are present in homozygous sh2 mutant mice, but the stereocilia are approximately 1/10 of the normal length. This review focuses on what we know about the molecular genetics and biochemistry of myosins VI, VIIA and XV as relates to hereditary hearing loss.
KW - Deafness
KW - Hearing loss
KW - Myosin VI
KW - Myosin VIIA
KW - Myosin XV
KW - Unconventional myosin
UR - http://www.scopus.com/inward/record.url?scp=0033600948&partnerID=8YFLogxK
U2 - 10.1002/(SICI)1096-8628(19990924)89:3<147::AID-AJMG5>3.0.CO;2-6
DO - 10.1002/(SICI)1096-8628(19990924)89:3<147::AID-AJMG5>3.0.CO;2-6
M3 - סקירה
AN - SCOPUS:0033600948
VL - 89
SP - 147
EP - 157
JO - American Journal of Medical Genetics, Part C: Seminars in Medical Genetics
JF - American Journal of Medical Genetics, Part C: Seminars in Medical Genetics
SN - 1552-4868
IS - 3
ER -