TY - JOUR
T1 - Unaligned Supervision for Automatic Music Transcription in-the-Wild
AU - Maman, Ben
AU - Bermano, Amit H.
N1 - Publisher Copyright:
Copyright © 2022 by the author(s)
PY - 2022
Y1 - 2022
N2 - Multi-instrument Automatic Music Transcription (AMT), or the decoding of a musical recording into semantic musical content, is one of the holy grails of Music Information Retrieval. Current AMT approaches are restricted to piano and (some) guitar recordings, due to difficult data collection. In order to overcome data collection barriers, previous AMT approaches attempt to employ musical scores in the form of a digitized version of the same song or piece. The scores are typically aligned using audio features and strenuous human intervention to generate training labels. We introduce NoteEM, a method for simultaneously training a transcriber and aligning the scores to their corresponding performances, in a fully-automated process. Using this unaligned supervision scheme, complemented by pseudo-labels and pitch shift augmentation, our method enables training on in-the-wild recordings with unprecedented accuracy and instrumental variety. Using only synthetic data and unaligned supervision, we report SOTA note-level accuracy of the MAPS dataset, and large favorable margins on cross-dataset evaluations. We also demonstrate robustness and ease of use; we report comparable results when training on a small, easily obtainable, self-collected dataset, and we propose alternative labeling to the MusicNet dataset, which we show to be more accurate. Our project page is available at https://benadar293.github.io.
AB - Multi-instrument Automatic Music Transcription (AMT), or the decoding of a musical recording into semantic musical content, is one of the holy grails of Music Information Retrieval. Current AMT approaches are restricted to piano and (some) guitar recordings, due to difficult data collection. In order to overcome data collection barriers, previous AMT approaches attempt to employ musical scores in the form of a digitized version of the same song or piece. The scores are typically aligned using audio features and strenuous human intervention to generate training labels. We introduce NoteEM, a method for simultaneously training a transcriber and aligning the scores to their corresponding performances, in a fully-automated process. Using this unaligned supervision scheme, complemented by pseudo-labels and pitch shift augmentation, our method enables training on in-the-wild recordings with unprecedented accuracy and instrumental variety. Using only synthetic data and unaligned supervision, we report SOTA note-level accuracy of the MAPS dataset, and large favorable margins on cross-dataset evaluations. We also demonstrate robustness and ease of use; we report comparable results when training on a small, easily obtainable, self-collected dataset, and we propose alternative labeling to the MusicNet dataset, which we show to be more accurate. Our project page is available at https://benadar293.github.io.
UR - http://www.scopus.com/inward/record.url?scp=85161100463&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.conferencearticle???
AN - SCOPUS:85161100463
SN - 2640-3498
VL - 162
SP - 14918
EP - 14934
JO - Proceedings of Machine Learning Research
JF - Proceedings of Machine Learning Research
T2 - 39th International Conference on Machine Learning, ICML 2022
Y2 - 17 July 2022 through 23 July 2022
ER -