Ultrasonic transcutaneous energy transfer for powering implanted devices

Shaul Ozeri, Doron Shmilovitz*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


This paper investigates ultrasonic transcutaneous energy transfer (UTET) as a method for energizing implanted devices at power level up to a few 100 mW. We propose a continuous wave 673 kHz single frequency operation to power devices implanted up to 40 mm deep subcutaneously. The proposed UTET demonstrated an overall peak power transfer efficiency of 27% at 70 mW output power (rectified DC power at the load). The transducers consisted of PZT plane discs of 15 mm diameter and 1.3 mm thick acoustic matching layer made of graphite. The power rectifier on the implant side attained 88.5% power transfer efficiency. The proposed approach is analyzed in detail, with design considerations provided to address issues such as recommended operating frequency range, acoustic link matching, receiver's rectifying electronics, and tissue bio-safety concerns. Global optimization and design considerations for maximum power transfer are presented and verified by means of finite element simulations and experimental results.

Original languageEnglish
Pages (from-to)556-566
Number of pages11
Issue number6
StatePublished - May 2010


  • Acoustic impedance matching
  • Powering implanted devices
  • Transcutaneous energy transfer
  • Ultrasonic energy


Dive into the research topics of 'Ultrasonic transcutaneous energy transfer for powering implanted devices'. Together they form a unique fingerprint.

Cite this