@article{ef236a05440e4f2ba90d3a2cf70743ca,
title = "Ultrasmall ATP-Coated Gold Nanoparticles Specifically Bind to Non-Hybridized Regions in DNA",
abstract = "Here we report the synthesis of ultrasmall (2 nm in diameter) ATP-coated gold nanoparticles, ATP-NPs. ATP-NPs can be enlarged in a predictable manner by the surface-catalyzed reduction of gold ions with ascorbate, yielding uniform gold nanoparticles ranging in size from 2 to 5 nm in diameter. Using atomic force microscopy (AFM), we demonstrate that ATP-NPs can efficiently and selectively bind to a short non-hybridized 5A/5A region (composed of a 5A-nucleotide on each strand of the double helix) inserted into a circular double-stranded plasmid, Puc19. Neither small (1.4 nm in diameter) commercially available nanoparticles nor 5 nm citrate-protected ones are capable of binding to the plasmid. The unique ability to specifically target DNA regions characterized by local structural alterations of the double helix can pave the way for applications of the particles in the detection of genomic DNA regions containing mismatches and mutations that are common for cancer cells.",
keywords = "AFM, DNA–nanoparticle conjugate, Puc19, TEM, gold nanoparticles",
author = "Liat Katrivas and Asaf Ben-Menachem and Saloni Gupta and Kotlyar, {Alexander B.}",
note = "Publisher Copyright: {\textcopyright} 2023 by the authors.",
year = "2023",
month = dec,
doi = "10.3390/nano13243080",
language = "אנגלית",
volume = "13",
journal = "Nanomaterials",
issn = "2079-4991",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "24",
}