Ultrasensitive chemiluminescent neuraminidase probe for rapid screening and identification of small-molecules with antiviral activity against influenza A virus in mammalian cells

Omri Shelef, Sara Gutkin, Daniel Feder, Ariel Ben-Bassat, Michal Mandelboim, Yoni Haitin, Nir Ben-Tal, Eran Bacharach, Doron Shabat*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Influenza A virus is the most virulent influenza subtype and is associated with large-scale global pandemics characterized by high levels of morbidity and mortality. Developing simple and sensitive molecular methods for detecting influenza viruses is critical. Neuraminidase, an exo-glycosidase displayed on the surface of influenza virions, is responsible for the release of the virions and their spread in the infected host. Here, we present a new phenoxy-dioxetane chemiluminescent probe (CLNA) that can directly detect neuraminidase activity. The probe exhibits an effective turn-on response upon reaction with neuraminidase and produces a strong emission signal at 515 nm with an extremely high signal-to-noise ratio. Comparison measurements of our new probe with previously reported analogous neuraminidase optical probes showed superior detection capability in terms of response time and sensitivity. Thus, as far as we know, our probe is the most sensitive neuraminidase probe known to date. The chemiluminescence turn-on response produced by our neuraminidase probe enables rapid screening for small molecules that inhibit viral replication through different mechanisms as validated directly in influenza A-infected mammalian cells using the known inhibitors oseltamivir and amantadine. We expect that our new chemiluminescent neuraminidase probe will prove useful for various applications requiring neuraminidase detection including drug discovery assays against various influenza virus strains in mammalian cells.

Original languageEnglish
Pages (from-to)12348-12357
Number of pages10
JournalChemical Science
Volume13
Issue number42
DOIs
StatePublished - 26 Sep 2022

Funding

FundersFunder number
Edmond J. Safra Center for Bioinformatics
Israel Innovation Authority
United States-Israel Binational Science Foundation
Israel Science Foundation
Tel Aviv University4861

    Fingerprint

    Dive into the research topics of 'Ultrasensitive chemiluminescent neuraminidase probe for rapid screening and identification of small-molecules with antiviral activity against influenza A virus in mammalian cells'. Together they form a unique fingerprint.

    Cite this