Two-dimensional vector solitons stabilized by a linear or nonlinear lattice acting in one component

O. V. Borovkova*, B. A. Malomed, Y. V. Kartashov

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The subject of the work is the stabilization of two-dimensional (2D) two-component (vector) solitons, in media with the attractive cubic nonlinearity, against the collapse by a linear lattice (LL, which is induced by a periodic modulation of the refractive index in optics, or created as an optical lattice in BEC), or by a nonlinear lattice (NL, induced by a periodic modulation of the nonlinearity coefficient). We demonstrate that, due to the XPM (cross-phase-modulation) coupling between the components, the LL or NL acting on a single component is sufficient for the stabilization of vector solitons, that include a component for which the self-focusing medium is uniform. In the case of the LL, the vector solitons are stable almost in their entire existence domain, while the NL can only stabilize the solitons in which the component affected by the lattice carries a norm which is comparable to, or larger than the norm of the component in the uniform medium.

Original languageEnglish
Article number64001
JournalJournal de Physique (Paris), Lettres
Volume92
Issue number6
DOIs
StatePublished - Dec 2010

Fingerprint

Dive into the research topics of 'Two-dimensional vector solitons stabilized by a linear or nonlinear lattice acting in one component'. Together they form a unique fingerprint.

Cite this