Two-Coloring Random Hypergraphs

Dimitris Achlioptas, Jeong Han Kim, Michael Krivelevich, Prasad Tetali*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

A 2-coloring of a hypergraph is a mapping from its vertex set to a set of two colors such that no edge is monochromatic. Let H = H(k, n, p) be a random k-uniform hypergraph on a vertex set V of cardinality n, where each k-subset of V is an edge of H with probability p, independently of all other k-subsets. Let m = p(kn) denote the expected number of edges in H. Let us say that a sequence of events ℰn holds with high probability (w.h.p.) if limn→∞Pr[ℰn] = 1. It is easy to show that if m = c2kn then w.h.p H is not 2-colorable for c > In 2/2. We prove that there exists a constant c > 0 such that if m = (c2 k/k)n, then w.h.p H is 2-colorable.

Original languageEnglish
Pages (from-to)249-259
Number of pages11
JournalRandom Structures and Algorithms
Volume20
Issue number2
DOIs
StatePublished - Mar 2002

Fingerprint

Dive into the research topics of 'Two-Coloring Random Hypergraphs'. Together they form a unique fingerprint.

Cite this