TTYH family members form tetrameric complexes at the cell membrane

Emelia Melvin, Zuzana Kalaninová, Elia Shlush, Petr Man, Moshe Giladi*, Yoni Haitin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


The conserved Tweety homolog (TTYH) family consists of three paralogs in vertebrates, displaying a ubiquitous expression pattern. Although considered as ion channels for almost two decades, recent structural and functional analyses refuted this role. Intriguingly, while all paralogs shared a dimeric stoichiometry following detergent solubilization, their structures revealed divergence in their relative subunit orientation. Here, we determined the stoichiometry of intact mouse TTYH (mTTYH) complexes in cells. Using cross-linking and single-molecule fluorescence microscopy, we demonstrate that mTTYH1 and mTTYH3 form tetramers at the plasma membrane, stabilized by interactions between their extracellular domains. Using blue-native PAGE, fluorescence-detection size-exclusion chromatography, and hydrogen/deuterium exchange mass spectrometry (HDX-MS), we reveal that detergent solubilization results in tetramers destabilization, leading to their dissolution into dimers. Moreover, HDX-MS demonstrates that the extracellular domains are stabilized in the context of the tetrameric mTTYH complex. Together, our results expose the innate tetrameric organization of TTYH complexes at the cell membrane. Future structural analyses of these assemblies in native membranes are required to illuminate their long-sought cellular function.

Original languageEnglish
Article number886
JournalCommunications Biology
Issue number1
StatePublished - Dec 2022


Dive into the research topics of 'TTYH family members form tetrameric complexes at the cell membrane'. Together they form a unique fingerprint.

Cite this