Trends in the Adsorption of Oxygen and Li2O2 on Transition-Metal Carbide Surfaces: A Theoretical Study

Polina Tereshchuk, Diana Golodnitsky, Amir Natan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In this work, we performed fundamental investigations of the adsorption of O2 and Li2O2 molecules on seven transition-metal carbide (TMC) surfaces, which present 3d, 4d, and 5d TM, where TM = Ti, V, Zr, Nb, Mo, Hf, and Ta. We employed density functional theory (DFT) with the semilocal meta-GGA SCAN functional. The oxide layer behaves as a passivation layer on the TiC(111), ZrC(111), α-MoC(001), and Mo2C(001) systems upon Li2O2 adsorption, but promotes the formation of the Li1O3TM1 layer on the VC(111), NbC(111), MoC(111), and HfC(111) surfaces due to the change in stoichiometry which is caused by the first adsorbed Li2O2 molecule. We showed that with increasing the number of the Li2O2 molecules on the TMC surfaces, the contribution of the TMC surface states turns out to be less important to the adsorption energy of the molecules. After the first layer of Li2O2, it approaches the native crystal values, which occurs faster with the occupation of the TM d-bands. This work can make a contribution in fundamental understanding and development of new, TMC-based, catalytic substrates for alkali-metal batteries.

Original languageEnglish
Pages (from-to)7716-7724
Number of pages9
JournalJournal of Physical Chemistry C
Volume124
Issue number14
DOIs
StatePublished - 9 Apr 2020

Fingerprint

Dive into the research topics of 'Trends in the Adsorption of Oxygen and Li2O2 on Transition-Metal Carbide Surfaces: A Theoretical Study'. Together they form a unique fingerprint.

Cite this