TY - JOUR
T1 - Trends in the Adsorption of Oxygen and Li2O2 on Transition-Metal Carbide Surfaces
T2 - A Theoretical Study
AU - Tereshchuk, Polina
AU - Golodnitsky, Diana
AU - Natan, Amir
N1 - Publisher Copyright:
© 2020 American Chemical Society.
PY - 2020/4/9
Y1 - 2020/4/9
N2 - In this work, we performed fundamental investigations of the adsorption of O2 and Li2O2 molecules on seven transition-metal carbide (TMC) surfaces, which present 3d, 4d, and 5d TM, where TM = Ti, V, Zr, Nb, Mo, Hf, and Ta. We employed density functional theory (DFT) with the semilocal meta-GGA SCAN functional. The oxide layer behaves as a passivation layer on the TiC(111), ZrC(111), α-MoC(001), and Mo2C(001) systems upon Li2O2 adsorption, but promotes the formation of the Li1O3TM1 layer on the VC(111), NbC(111), MoC(111), and HfC(111) surfaces due to the change in stoichiometry which is caused by the first adsorbed Li2O2 molecule. We showed that with increasing the number of the Li2O2 molecules on the TMC surfaces, the contribution of the TMC surface states turns out to be less important to the adsorption energy of the molecules. After the first layer of Li2O2, it approaches the native crystal values, which occurs faster with the occupation of the TM d-bands. This work can make a contribution in fundamental understanding and development of new, TMC-based, catalytic substrates for alkali-metal batteries.
AB - In this work, we performed fundamental investigations of the adsorption of O2 and Li2O2 molecules on seven transition-metal carbide (TMC) surfaces, which present 3d, 4d, and 5d TM, where TM = Ti, V, Zr, Nb, Mo, Hf, and Ta. We employed density functional theory (DFT) with the semilocal meta-GGA SCAN functional. The oxide layer behaves as a passivation layer on the TiC(111), ZrC(111), α-MoC(001), and Mo2C(001) systems upon Li2O2 adsorption, but promotes the formation of the Li1O3TM1 layer on the VC(111), NbC(111), MoC(111), and HfC(111) surfaces due to the change in stoichiometry which is caused by the first adsorbed Li2O2 molecule. We showed that with increasing the number of the Li2O2 molecules on the TMC surfaces, the contribution of the TMC surface states turns out to be less important to the adsorption energy of the molecules. After the first layer of Li2O2, it approaches the native crystal values, which occurs faster with the occupation of the TM d-bands. This work can make a contribution in fundamental understanding and development of new, TMC-based, catalytic substrates for alkali-metal batteries.
UR - http://www.scopus.com/inward/record.url?scp=85084044366&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.9b10863
DO - 10.1021/acs.jpcc.9b10863
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85084044366
SN - 1932-7447
VL - 124
SP - 7716
EP - 7724
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 14
ER -