TY - GEN
T1 - Trees with Attention for Set Prediction Tasks
AU - Hirsch, Roy
AU - Gilad-Bachrach, Ran
N1 - Publisher Copyright:
Copyright © 2021 by the author(s)
PY - 2021
Y1 - 2021
N2 - In many machine learning applications, each record represents a set of items. For example, when making predictions from medical records, the medications prescribed to a patient are a set whose size is not fixed and whose order is arbitrary. However, most machine learning algorithms are not designed to handle set structures and are limited to processing records of fixed size. Set-Tree, presented in this work, extends the support for sets to tree-based models, such as Random-Forest and Gradient-Boosting, by introducing an attention mechanism and set-compatible split criteria. We evaluate the new method empirically on a wide range of problems ranging from making predictions on sub-atomic particle jets to estimating the redshift of galaxies. The new method outperforms existing tree-based methods consistently and significantly. Moreover, it is competitive and often outperforms Deep Learning. We also discuss the theoretical properties of Set-Trees and explain how they enable item-level explainability.
AB - In many machine learning applications, each record represents a set of items. For example, when making predictions from medical records, the medications prescribed to a patient are a set whose size is not fixed and whose order is arbitrary. However, most machine learning algorithms are not designed to handle set structures and are limited to processing records of fixed size. Set-Tree, presented in this work, extends the support for sets to tree-based models, such as Random-Forest and Gradient-Boosting, by introducing an attention mechanism and set-compatible split criteria. We evaluate the new method empirically on a wide range of problems ranging from making predictions on sub-atomic particle jets to estimating the redshift of galaxies. The new method outperforms existing tree-based methods consistently and significantly. Moreover, it is competitive and often outperforms Deep Learning. We also discuss the theoretical properties of Set-Trees and explain how they enable item-level explainability.
UR - http://www.scopus.com/inward/record.url?scp=85150006596&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85150006596
T3 - Proceedings of Machine Learning Research
SP - 4250
EP - 4261
BT - Proceedings of the 38th International Conference on Machine Learning, ICML 2021
PB - ML Research Press
T2 - 38th International Conference on Machine Learning, ICML 2021
Y2 - 18 July 2021 through 24 July 2021
ER -