TY - JOUR
T1 - Transport through an Anderson impurity
T2 - Current ringing, nonlinear magnetization, and a direct comparison of continuous-time quantum Monte Carlo and hierarchical quantum master equations
AU - Härtle, R.
AU - Cohen, G.
AU - Reichman, D. R.
AU - Millis, A. J.
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/8/27
Y1 - 2015/8/27
N2 - We give a detailed comparison of the hierarchical quantum master equation (HQME) method to a continuous-time quantum Monte Carlo (CT-QMC) approach, assessing the usability of these numerically exact schemes as impurity solvers in practical nonequilibrium calculations. We review the main characteristics of the methods and discuss the scaling of the associated numerical effort. We substantiate our discussion with explicit numerical results for the nonequilibrium transport properties of a single-site Anderson impurity. The numerical effort of the HQME scheme scales linearly with the simulation time but increases (at worst exponentially) with decreasing temperature. In contrast, CT-QMC is less restricted by temperature at short times, but in general the cost of going to longer times is also exponential. After establishing the numerical exactness of the HQME scheme, we use it to elucidate the influence of different ways to induce transport through the impurity on the initial dynamics, discuss the phenomenon of coherent current oscillations, known as current ringing, and explain the nonmonotonic temperature dependence of the steady-state magnetization as a result of competing broadening effects. We also elucidate the pronounced nonlinear magnetization dynamics, which appears on intermediate time scales in the presence of an asymmetric coupling to the electrodes.
AB - We give a detailed comparison of the hierarchical quantum master equation (HQME) method to a continuous-time quantum Monte Carlo (CT-QMC) approach, assessing the usability of these numerically exact schemes as impurity solvers in practical nonequilibrium calculations. We review the main characteristics of the methods and discuss the scaling of the associated numerical effort. We substantiate our discussion with explicit numerical results for the nonequilibrium transport properties of a single-site Anderson impurity. The numerical effort of the HQME scheme scales linearly with the simulation time but increases (at worst exponentially) with decreasing temperature. In contrast, CT-QMC is less restricted by temperature at short times, but in general the cost of going to longer times is also exponential. After establishing the numerical exactness of the HQME scheme, we use it to elucidate the influence of different ways to induce transport through the impurity on the initial dynamics, discuss the phenomenon of coherent current oscillations, known as current ringing, and explain the nonmonotonic temperature dependence of the steady-state magnetization as a result of competing broadening effects. We also elucidate the pronounced nonlinear magnetization dynamics, which appears on intermediate time scales in the presence of an asymmetric coupling to the electrodes.
UR - http://www.scopus.com/inward/record.url?scp=84941074886&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.92.085430
DO - 10.1103/PhysRevB.92.085430
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84941074886
SN - 1098-0121
VL - 92
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 8
M1 - 085430
ER -