Transiting exoplanets from the CoRoT space mission: XXIV. CoRoT-25b and CoRoT-26b: Two low-density giant planets

J. M. Almenara, F. Bouchy, P. Gaulme, M. Deleuil, M. Havel, D. Gandolfi, H. J. Deeg, G. Wuchterl, T. Guillot, B. Gardes, T. Pasternacki, S. Aigrain, R. Alonso, M. Auvergne, A. Baglin, A. S. Bonomo, P. Bordé, J. Cabrera, S. Carpano, W. D. CochranSz Csizmadia, C. Damiani, R. F. Diaz, R. Dvorak, M. Endl, A. Erikson, S. Ferraz-Mello, M. Fridlund, G. Hébrard, M. Gillon, E. Guenther, A. Hatzes, A. Léger, H. Lammer, P. J. MacQueen, T. Mazeh, C. Moutou, M. Ollivier, A. Ofir, M. Pätzold, H. Parviainen, D. Queloz, H. Rauer, D. Rouan, A. Santerne, B. Samuel, J. Schneider, L. Tal-Or, B. Tingley, J. Weingrill

Research output: Contribution to journalArticlepeer-review


We report the discovery of two transiting exoplanets, CoRoT-25b and CoRoT-26b, both of low density, one of which is in the Saturn mass-regime. For each star, ground-based complementary observations through optical photometry and radial velocity measurements secured the planetary nature of the transiting body and allowed us to fully characterize them. For CoRoT-25b we found a planetary mass of 0.27 ± 0.04 MJup, a radius of 1.08 -0.10+0.3 RJup and hence a mean density of 0.15-0.06+0.15 g cm-3. The planet orbits an F9 main-sequence star in a 4.86-day period, that has a V magnitude of 15.0, solar metallicity, and an age of 4.5-2.0+1.8-Gyr. CoRoT-26b orbits a slightly evolved G5 star of 9.06 ± 1.5-Gyr age in a 4.20-day period that hassolar metallicity and a V magnitude of 15.8. With a mass of 0.52 ± 0.05 MJup, a radius of 1.26-0.07+0.13 RJup, and a mean density of 0.28-0.07+0.09 g cm-3, it belongs to the low-mass hot-Jupiter population. Planetary evolution models allowed us to estimate a core mass of a few tens of Earth mass for the two planets with heavy-element mass fractions of 0.52 -0.15+0.08 and 0.26-0.08+0.05, respectively, assuming that a small fraction of the incoming flux is dissipated at the center of the planet. In addition, these models indicate that CoRoT-26b is anomalously large compared with what standard models could account for, indicating that dissipation from stellar heating could cause this size.

Original languageEnglish
Article numberA118
JournalAstronomy and Astrophysics
StatePublished - 2013


  • Planetary systems
  • Techniques: photometric
  • Techniques: radial velocities
  • Techniques: spectroscopic


Dive into the research topics of 'Transiting exoplanets from the CoRoT space mission: XXIV. CoRoT-25b and CoRoT-26b: Two low-density giant planets'. Together they form a unique fingerprint.

Cite this