Transgene-free remote magnetothermal regulation of adrenal hormones

Dekel Rosenfeld, Alexander W. Senko, Junsang Moon, Isabel Yick, Georgios Varnavides, Danijela Gregureć, Florian Koehler, Po Han Chiang, Michael G. Christiansen, Lisa Y. Maeng, Alik S. Widge, Polina Anikeeva*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

52 Scopus citations


The field of bioelectronic medicines seeks to modulate electrical signaling within peripheral organs, providing temporally precise control of physiological functions. This is usually accomplished with implantable devices, which are often unsuitable for interfacing with soft and highly vascularized organs. Here, we demonstrate an alternative strategy for modulating peripheral organ function, which relies on the endogenous expression of a heat-sensitive cation channel, transient receptor potential vanilloid family member 1 (TRPV1), and heat dissipation by magnetic nanoparticles (MNPs) in remotely applied alternating magnetic fields. We use this approach to wirelessly control adrenal hormone secretion in genetically intact rats. TRPV1-dependent calcium influx into the cells of adrenal cortex and medulla is sufficient to drive rapid release of corticosterone and (nor)epinephrine. As altered levels of these hormones have been correlated with mental conditions such as posttraumatic stress disorder and major depression, our approach may facilitate the investigation of physiological and psychological impacts of stress.

Original languageEnglish
Article numbereaaz3734
JournalScience advances
Issue number15
StatePublished - 2020
Externally publishedYes


FundersFunder number
National Science Foundation
National Institutes of HealthDMR-14-19807
National Institute of Mental HealthR01MH111872
Defense Advanced Research Projects AgencyHR0011-15-C-0155
National Defense Science and Engineering Graduate32 CFR 168a


    Dive into the research topics of 'Transgene-free remote magnetothermal regulation of adrenal hormones'. Together they form a unique fingerprint.

    Cite this