TY - JOUR
T1 - Transformation of a dark soliton into a bright pulse
AU - Malomed, Boris A.
AU - Mostofi, Amir
AU - Chu, Pak L.
PY - 2000/4
Y1 - 2000/4
N2 - We consider a system of cubic complex Ginzburg-Landau equations governing copropagation of two waves with opposite signs of the dispersion in a nonlinear optical fiber in the presence of gain and losses. The waves are coupled by cross-phase modulation and stimulated Raman scattering. A special exact solution for a bound state of bright and dark solitons is found (unlike the well-known exact dark-soliton solution to the single complex Ginzburg-Landau equation, which is a sink, this compound soliton proves to be a source emitting traveling waves). Numerical simulations reveal that the compound soliton remains stable over -10 soliton periods. Next, we demonstrate that a very weak seed noise, added to an initial state in the form of a dark soliton in the normal-dispersion mode and nothing in the anomalous-dispersion one, gives rise to a process of the generation of a bright pulse in the latter mode, while the dark soliton gets grayer and eventually disappears. Thus this scheme can be used for an effective transformation of a dark soliton into a bright one, which is of interest by itself and may also find applications in photonics.
AB - We consider a system of cubic complex Ginzburg-Landau equations governing copropagation of two waves with opposite signs of the dispersion in a nonlinear optical fiber in the presence of gain and losses. The waves are coupled by cross-phase modulation and stimulated Raman scattering. A special exact solution for a bound state of bright and dark solitons is found (unlike the well-known exact dark-soliton solution to the single complex Ginzburg-Landau equation, which is a sink, this compound soliton proves to be a source emitting traveling waves). Numerical simulations reveal that the compound soliton remains stable over -10 soliton periods. Next, we demonstrate that a very weak seed noise, added to an initial state in the form of a dark soliton in the normal-dispersion mode and nothing in the anomalous-dispersion one, gives rise to a process of the generation of a bright pulse in the latter mode, while the dark soliton gets grayer and eventually disappears. Thus this scheme can be used for an effective transformation of a dark soliton into a bright one, which is of interest by itself and may also find applications in photonics.
UR - http://www.scopus.com/inward/record.url?scp=0034419657&partnerID=8YFLogxK
U2 - 10.1364/JOSAB.17.000507
DO - 10.1364/JOSAB.17.000507
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0034419657
VL - 17
SP - 507
EP - 513
JO - Journal of the Optical Society of America B: Optical Physics
JF - Journal of the Optical Society of America B: Optical Physics
SN - 0740-3224
IS - 4
ER -