TY - JOUR
T1 - Transdermal Minimally Invasive Optical Multiplex Detection of Protein Biomarkers by Nanopillars Array-Embedded Microneedles
AU - Raz, Adva
AU - Gubi, Hila
AU - Cohen, Adam
AU - Patolsky, Fernando
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/11/5
Y1 - 2024/11/5
N2 - Biomarkers detection has become essential in medical diagnostics and early detection of life-threatening diseases. Modern-day medicine relies heavily on painful and invasive tests, with the extraction of large volumes of venous blood being the most common tool of biomarker detection. These tests are time-consuming, complex, expensive and require multiple sample manipulations and trained staff. The application of “intradermal” biosensors utilizing microneedles as minimally invasive sensing elements for capillary blood biomarkers detection has gained extensive interest in the past few years as a central point-of-care (POC) detection platform. Herein, we present a diagnosis paradigm based on vertically aligned nanopillar array-embedded microneedles sampling-and-detection elements for the direct optical detection and quantification of biomarkers in capillary blood. We present here a demonstration of the simple fabrication route for the creation of a multidetection-zone silicon nanopillar array, embedded in microneedle elements, followed by their area-selective chemical modification, toward the multiplex intradermal biomarkers detection. The utilization of the rapid and specific antibody-antigen binding, combined with the intrinsically large sensing area created by the nanopillar array, enables the simultaneous efficient ultrafast and highly sensitive intradermal capillary blood sampling and detection of protein biomarkers of clinical relevance, without requiring the extraction of blood samples for the ex vivo biomarkers analysis. Through preliminary in vitro and in vivo experiments, the direct intradermal in-skin blood extraction-free platform has demonstrated excellent sensitivity (low pM) and specificity for the accurate multiplex detection of protein biomarkers in capillary blood.
AB - Biomarkers detection has become essential in medical diagnostics and early detection of life-threatening diseases. Modern-day medicine relies heavily on painful and invasive tests, with the extraction of large volumes of venous blood being the most common tool of biomarker detection. These tests are time-consuming, complex, expensive and require multiple sample manipulations and trained staff. The application of “intradermal” biosensors utilizing microneedles as minimally invasive sensing elements for capillary blood biomarkers detection has gained extensive interest in the past few years as a central point-of-care (POC) detection platform. Herein, we present a diagnosis paradigm based on vertically aligned nanopillar array-embedded microneedles sampling-and-detection elements for the direct optical detection and quantification of biomarkers in capillary blood. We present here a demonstration of the simple fabrication route for the creation of a multidetection-zone silicon nanopillar array, embedded in microneedle elements, followed by their area-selective chemical modification, toward the multiplex intradermal biomarkers detection. The utilization of the rapid and specific antibody-antigen binding, combined with the intrinsically large sensing area created by the nanopillar array, enables the simultaneous efficient ultrafast and highly sensitive intradermal capillary blood sampling and detection of protein biomarkers of clinical relevance, without requiring the extraction of blood samples for the ex vivo biomarkers analysis. Through preliminary in vitro and in vivo experiments, the direct intradermal in-skin blood extraction-free platform has demonstrated excellent sensitivity (low pM) and specificity for the accurate multiplex detection of protein biomarkers in capillary blood.
KW - biomarkers detection
KW - bloodless
KW - minimally invasive
KW - nanopillars array
KW - transdermal
UR - http://www.scopus.com/inward/record.url?scp=85207451114&partnerID=8YFLogxK
U2 - 10.1021/acsnano.4c11612
DO - 10.1021/acsnano.4c11612
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 39463189
AN - SCOPUS:85207451114
SN - 1936-0851
VL - 18
SP - 30848
EP - 30862
JO - ACS Nano
JF - ACS Nano
IS - 44
ER -