Transdermal Minimally Invasive Optical Multiplex Detection of Protein Biomarkers by Nanopillars Array-Embedded Microneedles

Adva Raz, Hila Gubi, Adam Cohen, Fernando Patolsky*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Biomarkers detection has become essential in medical diagnostics and early detection of life-threatening diseases. Modern-day medicine relies heavily on painful and invasive tests, with the extraction of large volumes of venous blood being the most common tool of biomarker detection. These tests are time-consuming, complex, expensive and require multiple sample manipulations and trained staff. The application of “intradermal” biosensors utilizing microneedles as minimally invasive sensing elements for capillary blood biomarkers detection has gained extensive interest in the past few years as a central point-of-care (POC) detection platform. Herein, we present a diagnosis paradigm based on vertically aligned nanopillar array-embedded microneedles sampling-and-detection elements for the direct optical detection and quantification of biomarkers in capillary blood. We present here a demonstration of the simple fabrication route for the creation of a multidetection-zone silicon nanopillar array, embedded in microneedle elements, followed by their area-selective chemical modification, toward the multiplex intradermal biomarkers detection. The utilization of the rapid and specific antibody-antigen binding, combined with the intrinsically large sensing area created by the nanopillar array, enables the simultaneous efficient ultrafast and highly sensitive intradermal capillary blood sampling and detection of protein biomarkers of clinical relevance, without requiring the extraction of blood samples for the ex vivo biomarkers analysis. Through preliminary in vitro and in vivo experiments, the direct intradermal in-skin blood extraction-free platform has demonstrated excellent sensitivity (low pM) and specificity for the accurate multiplex detection of protein biomarkers in capillary blood.

Original languageEnglish
Pages (from-to)30848-30862
Number of pages15
JournalACS Nano
Volume18
Issue number44
DOIs
StatePublished - 5 Nov 2024

Keywords

  • biomarkers detection
  • bloodless
  • minimally invasive
  • nanopillars array
  • transdermal

Fingerprint

Dive into the research topics of 'Transdermal Minimally Invasive Optical Multiplex Detection of Protein Biomarkers by Nanopillars Array-Embedded Microneedles'. Together they form a unique fingerprint.

Cite this