Toward recommendation for upskilling: Modeling skill improvement and item difficulty in action sequences

Kazutoshi Umemoto, Tova Milo, Masaru Kitsuregawa

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

How can recommender systems help people improve their skills? As a first step toward recommendation for the upskilling of users, this paper addresses the problems of modeling the improvement of user skills and the difficulty of items in action sequences where users select items at different times. We propose a progression model that uses latent variables to learn the monotonically non-decreasing progression of user skills. Once this model is trained with the given sequence data, we leverage it to find a statistical solution to the item difficulty estimation problem, where we assume that users usually select items within their skill capacity. Experiments on five datasets (four from real domains, and one generated synthetically) revealed that (1) our model successfully captured the progression of domain-dependent skills; (2) multi-faceted item features helped to learn better models that aligned well with the ground-truth skill and difficulty levels in the synthetic dataset; (3) the learned models were practically useful to predict items and ratings in action sequences; and (4) exploiting the dependency structure of our skill model for parallel computation made the training process more efficient.

Original languageEnglish
Title of host publicationProceedings - 2020 IEEE 36th International Conference on Data Engineering, ICDE 2020
PublisherIEEE Computer Society
Pages169-180
Number of pages12
ISBN (Electronic)9781728129037
DOIs
StatePublished - Apr 2020
Event36th IEEE International Conference on Data Engineering, ICDE 2020 - Dallas, United States
Duration: 20 Apr 202024 Apr 2020

Publication series

NameProceedings - International Conference on Data Engineering
Volume2020-April
ISSN (Print)1084-4627

Conference

Conference36th IEEE International Conference on Data Engineering, ICDE 2020
Country/TerritoryUnited States
CityDallas
Period20/04/2024/04/20

Fingerprint

Dive into the research topics of 'Toward recommendation for upskilling: Modeling skill improvement and item difficulty in action sequences'. Together they form a unique fingerprint.

Cite this