Abstract
The neurodevelopmental hypothesis of schizophrenia has been highly influential in shaping our current thinking about modeling the disease in animals. Based on the findings provided by human epidemiological studies, a great deal of recent interest has been centered upon the establishment of neurodevelopmental rodent models in which the basic experimental manipulation takes the form of prenatal exposure to infection and/or immune activation. One such model is based on prenatal treatment with the inflammatory agent poly(I:C) (=polyriboinosinic-polyribocytidilic acid), a synthetic analog of double-stranded RNA. Since its initial establishment and application to basic schizophrenia research, the poly(I:C) model has made a great impact on researchers concentrating on the neurodevelopmental and neuroimmunological basis of complex human brain disorders such as schizophrenia, and as a consequence, the model now enjoys wide recognition in the international scientific community. The present article emphasizes that the poly(I:C) model has gained such impact because it successfully accounts for several aspects of schizophrenia epidemiology, pathophysiology, symptomatology, and treatment. The numerous features of this experimental system make the poly(I:C) model a very powerful neurodevelopmental animal model of schizophrenia-relevant brain disease which is expected to be capable of critically advancing our knowledge of how the brain, following an (immune-associated) triggering event in early life, can develop into a "schizophrenia-like brain" over time. Furthermore, the poly(I:C) model seems highly suitable for the exploration of novel pharmacological and neuro-immunomodulatory strategies for both symptomatic and preventive treatments against psychotic disease, as well as for the identification of neurobiological mechanisms underlying gene-environment and environment-environment interactions presumably involved in the etiology of schizophrenia and related disorders. This article is part of a Special Issue entitled 'Schizophrenia'.
Original language | English |
---|---|
Pages (from-to) | 1308-1321 |
Number of pages | 14 |
Journal | Neuropharmacology |
Volume | 62 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2012 |
Externally published | Yes |
Keywords
- Animal model
- Cognition
- Cytokines
- Dopamine
- Glutamate
- Prevention
- Prodromal