Tissue loads applied by a novel medical device for closing large wounds

Rona Katzengold*, Moris Topaz, Amit Gefen

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

Closure of large soft-tissue defects following surgery or trauma constitutes substantial but common reconstructive challenges. Closing the wounds with sutures is a common solution yet involving high-tension closure. The alternative methods of closure such as skin grafting are often associated with relatively more complex surgical procedures, significant morbidity, and extended hospitalization and recovery periods. Here, we evaluate the efficacy of a tension relief system (TRS) device and compare it to surgical sutures. We employed finite element modeling and simulated three cases of (real) large wounds which were treated with TRS in reality, each located in a different organ and has different dimensions. Closure of the wounds induced peak-effective stresses on the skin that were at least an order of magnitude greater (and sometimes nearly 2 orders of magnitude greater) than when tension sutures were used with respect to the corresponding TRS data. For the tension suture simulations, the tensile stress was in the range of 415–648MPa and in the TRS simulations, it was 16–30MPa. Such large localized tissue distortions may obstruct the vasculature surrounding the wound or at the sutured skin itself, which will cause ischemia and necrosis of the skin within several hours following surgery. In addition, the substantial reduction of loads on and within the skin during large wound closure by the TRS allows surgeons to optimally employ the viscoelastic properties of the skin for primary wound closure.

Original languageEnglish
Title of host publicationLecture Notes in Bioengineering
PublisherSpringer
Pages223-227
Number of pages5
DOIs
StatePublished - 2018

Publication series

NameLecture Notes in Bioengineering
ISSN (Print)2195-271X
ISSN (Electronic)2195-2728

Fingerprint

Dive into the research topics of 'Tissue loads applied by a novel medical device for closing large wounds'. Together they form a unique fingerprint.

Cite this