Three Self-Adhesive Resin Cements and Their Influence on the Marginal Adaptation of Zirconia-Reinforced Lithium Silicate Single Crowns: An In Vitro Scanning Electron Microscope Evaluation

Asaf Shely, Joseph Nissan, Diva Lugassy, Ofir Rosner, Eran Zenziper, Tharaa Egbaria, Gil Ben-Izhack*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Background: In everyday dentistry, monolithic single crowns can be cemented with self-adhesive resin cements. The aim of this in vitro study was to evaluate how the marginal adaptation of full monolithic zirconia-reinforced lithium silicate (ZLS) single crowns is influenced by three different self-adhesive resin cements. Methods: Forty-five typodont teeth fully prepared for full monolithic crowns were divided into three groups (fifteen each) for the use of three different self-adhesive resin cements. A fourth control group (Temp-bond) was created by taking five teeth from each group before cementation with self-adhesive resin cements. All forty-five abutments were scanned using a Primescan intra-oral scanner (IOS), followed by computer-aided design (CAD) and computer-aided manufacturing (CAM) of zirconia-reinforced lithium silicate (ZLS) full crowns using a four-axis machine. Initially, the crowns of the control group were fixed to the abutments using Temp-bond, and the marginal gap was evaluated using a scanning electron microscope (SEM). After removing the control group crowns from the abutments, fifteen crowns in each group were cemented using a different self-adhesive resin cement and observed under SEM for evaluation of the marginal gap. A Kolmogorov–Smirnov test was performed, indicating no normal distribution (p < 0.05), followed by Mann–Whitney tests (α = 0.05). Results: The total mean marginal gap of the temp-bond control group was significantly lower compared to all three groups of self-adhesive resin cement (p < 0.0005). The total mean marginal gap of the G-cem ONE group was significantly lower compared to the TheraCem group (p < 0.026) and RelyX U200 group (p < 0.008). The total mean marginal gap of the TheraCem group was significantly higher than the G-cem ONE group (p < 0.026) but showed no significant difference with the RelyX U200 group (p > 0.110). Conclusions: All four groups showed a clinically acceptable marginal gap (<120 microns). Although all three groups of self-adhesive resin cement showed a significant increase in the marginal gap compared to the temp-bond control group, they were within the limits of clinical acceptability. Regarding the marginal gap, in everyday dentistry, it is acceptable to use all three self-adhesive resin cements, although the G-cem ONE group exhibited the lowest marginal gap for ZLS single crowns.

Original languageEnglish
Article number3330
JournalJournal of Clinical Medicine
Volume13
Issue number11
DOIs
StatePublished - Jun 2024

Keywords

  • CAD-CAM
  • SEM
  • ZLS
  • dental materials
  • digital dentistry
  • intraoral scanning
  • marginal adaptation
  • marginal gap
  • prosthodontics
  • self-adhesive resin cement

Fingerprint

Dive into the research topics of 'Three Self-Adhesive Resin Cements and Their Influence on the Marginal Adaptation of Zirconia-Reinforced Lithium Silicate Single Crowns: An In Vitro Scanning Electron Microscope Evaluation'. Together they form a unique fingerprint.

Cite this