Abstract
Some special three-dimensional problems of incompressible flow in the presence of magnetic neutral points are considered. For that purpose, the group invariant properties of the incompressible magnetohydrodynamic equations are studied and isomorphic mappings, together with a family of similarity solutions, are constructed. Two cases which are analyzed explicitly, show the variety of three-dimensional topologies which may vary very significantly from the planar case. Particularly, three-dimensional topology without resistivity may be similar to planar topology with finite resistivity, and the number of neutral points is determined by the boundary conditions.
Original language | English |
---|---|
Pages (from-to) | 849-858 |
Number of pages | 10 |
Journal | Physics of Fluids |
Volume | 22 |
Issue number | 5 |
DOIs | |
State | Published - 1979 |
Externally published | Yes |