The unexpected smoke layer in the High Arctic winter stratosphere during MOSAiC 2019-2020

Kevin Ohneiser*, Albert Ansmann, Alexandra Chudnovsky, Ronny Engelmann, Christoph Ritter, Igor Veselovskii, Holger Baars, Henriette Gebauer, Hannes Griesche, Martin Radenz, Julian Hofer, Dietrich Althausen, Sandro Dahlke, Marion Maturilli

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

During the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, the German icebreaker Polarstern drifted through Arctic Ocean ice from October 2019 to May 2020, mainly at latitudes between 85 and 88.5ggN. A multiwavelength polarization Raman lidar was operated on board the research vessel and continuously monitored aerosol and cloud layers up to a height of 30gkm. During our mission, we expected to observe a thin residual volcanic aerosol layer in the stratosphere, originating from the Raikoke volcanic eruption in June 2019, with an aerosol optical thickness (AOT) of 0.005-0.01 at 500gnm over the North Pole area during the winter season. However, the highlight of our measurements was the detection of a persistent, 10gkm deep aerosol layer in the upper troposphere and lower stratosphere (UTLS), from about 7-8 to 17-18gkm height, with clear and unambiguous wildfire smoke signatures up to 12gkm and an order of magnitude higher AOT of around 0.1 in the autumn of 2019. Case studies are presented to explain the specific optical fingerprints of aged wildfire smoke in detail. The pronounced aerosol layer was present throughout the winter half-year until the strong polar vortex began to collapse in late April 2020. We hypothesize that the detected smoke originated from extraordinarily intense and long-lasting wildfires in central and eastern Siberia in July and August 2019 and may have reached the tropopause layer by the self-lifting process. In this article, we summarize the main findings of our 7-month smoke observations and characterize the aerosol in terms of geometrical, optical, and microphysical properties. The UTLS AOT at 532gnm ranged from 0.05-0.12 in October-November 2019 and 0.03-0.06 during the main winter season. The Raikoke aerosol fraction was estimated to always be lower than 15g%. We assume that the volcanic aerosol was above the smoke layer (above 13gkm height). As an unambiguous sign of the dominance of smoke in the main aerosol layer from 7-13gkm height, the particle extinction-to-backscatter ratio (lidar ratio) at 355gnm was found to be much lower than at 532gnm, with mean values of 55 and 85gsr, respectively. The 355-532gnm Angstrom exponent of around 0.65 also clearly indicated the presence of smoke aerosol. For the first time, we show a distinct view of the aerosol layering features in the High Arctic from the surface up to 30gkm height during the winter half-year. Finally, we provide a vertically resolved view on the late winter and early spring conditions regarding ozone depletion, smoke occurrence, and polar stratospheric cloud formation. The latter will largely stimulate research on a potential impact of the unexpected stratospheric aerosol perturbation on the record-breaking ozone depletion in the Arctic in spring 2020.

Original languageEnglish
Pages (from-to)15783-15808
Number of pages26
JournalAtmospheric Chemistry and Physics
Volume21
Issue number20
DOIs
StatePublished - 22 Oct 2021

Fingerprint

Dive into the research topics of 'The unexpected smoke layer in the High Arctic winter stratosphere during MOSAiC 2019-2020'. Together they form a unique fingerprint.

Cite this