TY - JOUR
T1 - The substructure of the suprachiasmatic nucleus
T2 - Similarities between nocturnal and diurnal spiny mice
AU - Cohen, Rotem
AU - Kronfeld-Schor, Noga
AU - Ramanathan, Chidambaram
AU - Baumgras, Anna
AU - Smale, Laura
PY - 2010/3
Y1 - 2010/3
N2 - Evolutionary transitions between nocturnal and diurnal patterns of adaptation to the day-night cycle must have involved fundamental changes in the neural mechanisms that coordinate the daily patterning of activity, but little is known about how these mechanisms differ. One reason is that information on these systems in very closely related diurnal and nocturnal species is lacking. In this study, we characterize the suprachiasmatic nucleus (SCN), the primary brain structure involved in the generation and coordination of circadian rhythms, in two members of the genus Acomys with very different activity patterns, Acomys russatus (the golden spiny mouse, diurnal) and Acomys cahirinus (the common spiny mouse, nocturnal). Immunohistochemical techniques were used to label cell bodies containing vasoactive intestinal polypeptide (VIP), vasopressin (VP), gastrin-releasing peptide (GRP) and calbindin (CalB) in the SCN, as well as two sets of inputs to it, those containing serotonin (5-HT) and neuropeptide Y (NPY), respectively. All were present in the SCN of both species and no differences between them were seen. On the basis of neuronal phenotype, the SCN was organized into three basic regions that contained VIP-immunoreactive (-ir), CalB-ir and VP-ir cells, in the ventral, middle and dorsal SCN, respectively. In the rostral SCN, GRP-ir cells were in both the VIP and the CalB cell regions, and in the caudal area they were distributed across a portion of each of the other three regions. Fibers containing NPY-ir and serotonin (5-HT)-ir were most concentrated in the areas containing VIP-ir and CalB-ir cells, respectively. The details of the spatial relationships among the labeled cells and fibers seen here are discussed in relation to different approaches investigators have taken to characterize the SCN more generally.
AB - Evolutionary transitions between nocturnal and diurnal patterns of adaptation to the day-night cycle must have involved fundamental changes in the neural mechanisms that coordinate the daily patterning of activity, but little is known about how these mechanisms differ. One reason is that information on these systems in very closely related diurnal and nocturnal species is lacking. In this study, we characterize the suprachiasmatic nucleus (SCN), the primary brain structure involved in the generation and coordination of circadian rhythms, in two members of the genus Acomys with very different activity patterns, Acomys russatus (the golden spiny mouse, diurnal) and Acomys cahirinus (the common spiny mouse, nocturnal). Immunohistochemical techniques were used to label cell bodies containing vasoactive intestinal polypeptide (VIP), vasopressin (VP), gastrin-releasing peptide (GRP) and calbindin (CalB) in the SCN, as well as two sets of inputs to it, those containing serotonin (5-HT) and neuropeptide Y (NPY), respectively. All were present in the SCN of both species and no differences between them were seen. On the basis of neuronal phenotype, the SCN was organized into three basic regions that contained VIP-immunoreactive (-ir), CalB-ir and VP-ir cells, in the ventral, middle and dorsal SCN, respectively. In the rostral SCN, GRP-ir cells were in both the VIP and the CalB cell regions, and in the caudal area they were distributed across a portion of each of the other three regions. Fibers containing NPY-ir and serotonin (5-HT)-ir were most concentrated in the areas containing VIP-ir and CalB-ir cells, respectively. The details of the spatial relationships among the labeled cells and fibers seen here are discussed in relation to different approaches investigators have taken to characterize the SCN more generally.
KW - Acomys
KW - Calbindin
KW - Diurnal
KW - Gastrin-releasing peptide
KW - Neuropeptide Y
KW - Nocturnal
KW - Serotonin
KW - Suprachiasmatic nucleus
KW - Vasoactive intestinal polypeptide
KW - Vasopressin
UR - http://www.scopus.com/inward/record.url?scp=77950096280&partnerID=8YFLogxK
U2 - 10.1159/000282172
DO - 10.1159/000282172
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:77950096280
SN - 0006-8977
VL - 75
SP - 9
EP - 22
JO - Brain, Behavior and Evolution
JF - Brain, Behavior and Evolution
IS - 1
ER -