The structure of hydrodynamic γ -ray burst jets

Ore Gottlieb*, Ehud Nakar, Omer Bromberg

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

After being launched, gamma-ray burst (GRB) jets propagate through dense media prior to their breakout. The jet-medium interaction results in the formation of a complex structured outflow, often referred to as a 'structured jet'. The underlying physics of the jet-medium interaction that sets the post-breakout jet morphology has never been explored systematically. Here, we use a suite of 3D simulations to follow the evolution of hydrodynamic long and short gamma-ray bursts (lGRBs and sGRBs) jets after breakout to study the post-breakout structure induced by the interaction. Our simulations feature Rayleigh-Taylor fingers that grow from the cocoon into the jet, mix cocoon with jet material and destabilize the jet. The mixing gives rise to a previously unidentified region sheathing the jet from the cocoon, which we denote the jet-cocoon interface (JCI). lGRBs undergo strong mixing, resulting in most of the jet energy to drift into the JCI, while in sGRBs weaker mixing is possible, leading to a comparable amount of energy in the two components. Remarkably, the jet structure (jet-core plus JCI) can be characterized by simple universal angular power-law distributions, with power-law indices that depend solely on the mixing level. This result supports the commonly used power-law angular distribution, and disfavours Gaussian jets. At larger angles, where the cocoon dominates, the structure is more complex. The mixing shapes the prompt emission light curve and implies that typical lGRB afterglows are different from those of sGRBs. Our predictions can be used to infer jet characteristics from prompt and afterglow observations.

Original languageEnglish
Pages (from-to)3511-3526
Number of pages16
JournalMonthly Notices of the Royal Astronomical Society
Volume500
Issue number3
DOIs
StatePublished - 1 Jan 2021

Keywords

  • Gamma-ray burst
  • Hydrodynamics
  • Instabilities
  • Methods: numerical

Fingerprint

Dive into the research topics of 'The structure of hydrodynamic γ -ray burst jets'. Together they form a unique fingerprint.

Cite this