The role of lookahead in estimation under Gaussian noise

Kartik Venkat, Tsachy Weissman, Yair Carmon, Shlomo Shamai

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider mean squared estimation of a continuous-time signal corrupted by additive white Gaussian noise. We investigate the trade-off between lookahead and estimation-loss under this model. We study the class of continuous-time stationary Gauss-Markov processes (Ornstein-Uhlenbeck processes) as channel inputs, and explicitly characterize the behavior of the minimum mean squared error (MMSE) with finite lookahead and signal-to-noise ratio (SNR). The MMSE with lookahead is shown to converge exponentially rapidly to the non-causal error, with the exponent being the reciprocal of the non-causal error. We extend our results to mixtures of Ornstein-Uhlenbeck processes, and use the insight gained to present lower and upper bounds on the MMSE with lookahead for a class of stationary Gaussian input processes, whose spectrum can be expressed as a mixture of Ornstein-Uhlenbeck spectra.

Original languageEnglish
Title of host publication2013 IEEE International Symposium on Information Theory, ISIT 2013
Pages2850-2854
Number of pages5
DOIs
StatePublished - 2013
Externally publishedYes
Event2013 IEEE International Symposium on Information Theory, ISIT 2013 - Istanbul, Turkey
Duration: 7 Jul 201312 Jul 2013

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Conference

Conference2013 IEEE International Symposium on Information Theory, ISIT 2013
Country/TerritoryTurkey
CityIstanbul
Period7/07/1312/07/13

Fingerprint

Dive into the research topics of 'The role of lookahead in estimation under Gaussian noise'. Together they form a unique fingerprint.

Cite this