TY - JOUR
T1 - The role of allostery in the ubiquitin-proteasome system
AU - Liu, Jin
AU - Nussinov, Ruth
N1 - Funding Information:
This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under contract number HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products or organizations imply endorsement by the U.S. Government. This research was supported (in part) by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.
PY - 2013/3
Y1 - 2013/3
N2 - The ubiquitin-proteasome system (UPS) is involved in many cellular processes including protein degradation. Degradation of a protein via this system involves two successive steps: ubiquitination and degradation. Ubiquitination tags the target protein with ubiquitin-like proteins (UBLs), such as ubiquitin, small ubiquitin-like modifier (SUMO) and NEDD8, via a cascade involving three enzymes: activating enzyme E1, conjugating enzyme E2 and E3 ubiquitin ligases. The proteasomes recognize the UBL-tagged substrate proteins and degrade them. Accumulating evidence indicates that allostery is a central player in the regulation of ubiquitination, as well as deubiquitination and degradation. Here, we provide an overview of the key mechanistic roles played by allostery in all steps of these processes, and highlight allosteric drugs targeting them. Throughout the review, we emphasize the crucial mechanistic role played by linkers in allosterically controlling the UPS action by biasing the sampling of the conformational space, which facilitate the catalytic reactions of the ubiquitination and degradation. Finally, we propose that allostery may similarly play key roles in the regulation of molecular machines in the cell, and as such allosteric drugs can be expected to be increasingly exploited in therapeutic regimes.
AB - The ubiquitin-proteasome system (UPS) is involved in many cellular processes including protein degradation. Degradation of a protein via this system involves two successive steps: ubiquitination and degradation. Ubiquitination tags the target protein with ubiquitin-like proteins (UBLs), such as ubiquitin, small ubiquitin-like modifier (SUMO) and NEDD8, via a cascade involving three enzymes: activating enzyme E1, conjugating enzyme E2 and E3 ubiquitin ligases. The proteasomes recognize the UBL-tagged substrate proteins and degrade them. Accumulating evidence indicates that allostery is a central player in the regulation of ubiquitination, as well as deubiquitination and degradation. Here, we provide an overview of the key mechanistic roles played by allostery in all steps of these processes, and highlight allosteric drugs targeting them. Throughout the review, we emphasize the crucial mechanistic role played by linkers in allosterically controlling the UPS action by biasing the sampling of the conformational space, which facilitate the catalytic reactions of the ubiquitination and degradation. Finally, we propose that allostery may similarly play key roles in the regulation of molecular machines in the cell, and as such allosteric drugs can be expected to be increasingly exploited in therapeutic regimes.
KW - Allosteric
KW - Allostery
KW - Degradation
KW - Molecular machine
KW - Ubiquitin
UR - http://www.scopus.com/inward/record.url?scp=84875591188&partnerID=8YFLogxK
U2 - 10.3109/10409238.2012.742856
DO - 10.3109/10409238.2012.742856
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
AN - SCOPUS:84875591188
SN - 1040-9238
VL - 48
SP - 89
EP - 97
JO - Critical Reviews in Biochemistry and Molecular Biology
JF - Critical Reviews in Biochemistry and Molecular Biology
IS - 2
ER -