The random k-matching-free process

Michael Krivelevich, Matthew Kwan, Po Shen Loh, Benny Sudakov

Research output: Contribution to journalArticlepeer-review

Abstract

Let P be a graph property which is preserved by removal of edges, and consider the random graph process that starts with the empty n-vertex graph and then adds edges one-by-one, each chosen uniformly at random subject to the constraint that P is not violated. These types of random processes have been the subject of extensive research over the last 20 years, having striking applications in extremal combinatorics, and leading to the discovery of important probabilistic tools. In this paper we consider the k-matching-free process where P is the property of not containing a matching of size k. We are able to analyze the behavior of this process for a wide range of values of k; in particular we prove that if k = o(n) or if n-2k = o (√n/log n) then this process is likely to terminate in a k-matching-free graph with the maximum possible number of edges, as characterized by Erdős and Gallai. We also show that these bounds on k are essentially best possible, and we make a first step towards understanding the behavior of the process in the intermediate regime.

Original languageEnglish
Pages (from-to)692-716
Number of pages25
JournalRandom Structures and Algorithms
Volume53
Issue number4
DOIs
StatePublished - Dec 2018

Keywords

  • matching
  • random graph
  • random process

Fingerprint

Dive into the research topics of 'The random k-matching-free process'. Together they form a unique fingerprint.

Cite this