The progenitor of ATP synthases was closely related to the current vacuolar H+-ATPase

Hannah Nelson, Nathan Nelson*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

151 Scopus citations

Abstract

The gene encoding the proteolipid of the vacuolar H+-ATPase of yeast was cloned and sequenced. The deduced amino acid sequence of the yeast protein is highly homologous to that of the proteolipid from bovine chromaffin granules. In contrast to other membrane proteins the transmembrane segments of the bovine and yeast proteolipids were much more conserved than the hydrophilic parts. The fourth transmembrane segment, which contains the DCCD-binding site, was conserved 100%. Comparison of vacuolar and eubacterial proteolipids revealed a homology which pointed to a common ancestral gene that underwent gene duplication to form the vacuolar proteolipids. Additional support for this notion came from the amino acid sequences of subunits involved in the catalytic sectors of archaebacterial ATP synthase and plant and yeast vacuolar H+-ATPases, which reveal extensive sequence homology. Slight, but significant, homology between the archaebacterial and eubacterial ATP synthases was observed. These observations might suggest that the progenitor of ATP synthases was closely related to the present vacuolar H+-ATPases.

Original languageEnglish
Pages (from-to)147-153
Number of pages7
JournalFEBS Letters
Volume247
Issue number1
DOIs
StatePublished - 10 Apr 1989
Externally publishedYes

Keywords

  • ATP synthase
  • ATPase, vacuolar H-
  • Evolution
  • Proteolipid

Fingerprint

Dive into the research topics of 'The progenitor of ATP synthases was closely related to the current vacuolar H+-ATPase'. Together they form a unique fingerprint.

Cite this