TY - JOUR
T1 - The proatherogenic effect of chronic nitric oxide synthesis inhibition in ApoE-Null mice is dependent on the presence of PPAR α
AU - Vechoropoulos, Michal
AU - Ish-Shalom, Maya
AU - Shaklai, Sigal
AU - Sack, Jessica
AU - Stern, Naftali
AU - Tordjman, Karen M.
PY - 2014
Y1 - 2014
N2 - Inhibition of endothelial nitric oxide synthase (eNOS) accelerates atherosclerosis in ApoE-null mice by impairing the balance between angiotensin II (AII) and NO. Our previous data suggested a role for PPARα in the deleterious effect of the renin-angiotensin system (RAS). We tested the hypothesis that ApoE-null mice lacking PPARα (DKO mice) would be resistant to the proatherogenic effect of NOS inhibition. DKO mice fed a Western diet were immune to the 23% worsening in aortic sinus plaque area seen in the ApoE-null animals under 12 weeks of NOS inhibition with a subpressor dose of L-NAME, P=0.002. This was accompanied by a doubling of reactive oxygen species (ROS-) generating aortic NADPH oxidase activity (a target of AII, which paralleled Nox1 expression) and by a 10-fold excess of the proatherogenic iNOS, P<0.01. L-NAME also caused a doubling of aortic renin and angiotensinogen mRNA level in the ApoE-null mice but not in the DKO, and it upregulated eNOS in the DKO mice only. These data suggest that, in the ApoE-null mouse, PPARα contributes to the proatherogenic effect of unopposed RAS/AII action induced by L-NAME, an effect which is associated with Nox1 and iNOS induction, and is independent of blood pressure and serum lipids.
AB - Inhibition of endothelial nitric oxide synthase (eNOS) accelerates atherosclerosis in ApoE-null mice by impairing the balance between angiotensin II (AII) and NO. Our previous data suggested a role for PPARα in the deleterious effect of the renin-angiotensin system (RAS). We tested the hypothesis that ApoE-null mice lacking PPARα (DKO mice) would be resistant to the proatherogenic effect of NOS inhibition. DKO mice fed a Western diet were immune to the 23% worsening in aortic sinus plaque area seen in the ApoE-null animals under 12 weeks of NOS inhibition with a subpressor dose of L-NAME, P=0.002. This was accompanied by a doubling of reactive oxygen species (ROS-) generating aortic NADPH oxidase activity (a target of AII, which paralleled Nox1 expression) and by a 10-fold excess of the proatherogenic iNOS, P<0.01. L-NAME also caused a doubling of aortic renin and angiotensinogen mRNA level in the ApoE-null mice but not in the DKO, and it upregulated eNOS in the DKO mice only. These data suggest that, in the ApoE-null mouse, PPARα contributes to the proatherogenic effect of unopposed RAS/AII action induced by L-NAME, an effect which is associated with Nox1 and iNOS induction, and is independent of blood pressure and serum lipids.
UR - http://www.scopus.com/inward/record.url?scp=84893844948&partnerID=8YFLogxK
U2 - 10.1155/2014/124583
DO - 10.1155/2014/124583
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84893844948
SN - 1687-4757
VL - 2014
JO - PPAR Research
JF - PPAR Research
M1 - 124583
ER -