TY - GEN
T1 - The power of feature clustering
T2 - 18th Annual Conference on Neural Information Processing Systems, NIPS 2004
AU - Avidan, Shai
AU - Butman, Moshe
PY - 2005
Y1 - 2005
N2 - We give a fast rejection scheme that is based on image segments and demonstrate it on the canonical example of face detection. However, instead of focusing on the detection step we focus on the rejection step and show that our method is simple and fast to be learned, thus making it an excellent pre-processing step to accelerate standard machine learning classifiers, such as neural-networks, Bayes classifiers or SVM. We decompose a collection of face images into regions of pixels with similar behavior over the image set. The relationships between the mean and variance of image segments are used to form a cascade of rejectors that can reject over 99:8% of image patches, thus only a small fraction of the image patches must be passed to a full-scale classifier. Moreover, the training time for our method is much less than an hour, on a standard PC. The shape of the features (i.e. image segments) we use is data-driven, they are very cheap to compute and they form a very low dimensional feature space in which exhaustive search for the best features is tractable.
AB - We give a fast rejection scheme that is based on image segments and demonstrate it on the canonical example of face detection. However, instead of focusing on the detection step we focus on the rejection step and show that our method is simple and fast to be learned, thus making it an excellent pre-processing step to accelerate standard machine learning classifiers, such as neural-networks, Bayes classifiers or SVM. We decompose a collection of face images into regions of pixels with similar behavior over the image set. The relationships between the mean and variance of image segments are used to form a cascade of rejectors that can reject over 99:8% of image patches, thus only a small fraction of the image patches must be passed to a full-scale classifier. Moreover, the training time for our method is much less than an hour, on a standard PC. The shape of the features (i.e. image segments) we use is data-driven, they are very cheap to compute and they form a very low dimensional feature space in which exhaustive search for the best features is tractable.
UR - http://www.scopus.com/inward/record.url?scp=39549085695&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:39549085695
SN - 0262195348
SN - 9780262195348
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 17 - Proceedings of the 2004 Conference, NIPS 2004
PB - Neural information processing systems foundation
Y2 - 13 December 2004 through 16 December 2004
ER -