TY - JOUR
T1 - The PI3K-NF-κB signal transduction pathway is involved in mediating the anti-inflammatory effect of IB-MECA in adjuvant-induced arthritis
AU - Fishman, Pnina
AU - Bar-Yehuda, Sara
AU - Madi, Lea
AU - Rath-Wolfson, Lea
AU - Ochaion, Avivit
AU - Cohen, Shira
AU - Baharav, Ehud
PY - 2006/1/13
Y1 - 2006/1/13
N2 - The anti-inflammatory effect of adenosine was previously found to be mediated via activation of the A3 adenosine receptor (A3AR). The aim of the present study was to decipher the molecular mechanism involved with the inhibitory effect of IBMECA, an A3AR agonist, on adjuvant-induced arthritis. The adjuvant-induced arthritis rats responded to IB-MECA treatment with a decrease in the clinical score and the pathological score of the disease. The response to IB-MECA was neutralized by the antagonist MRS 1220, confirming that the efficacy of the synthetic agonist was A3AR mediated. The A3AR protein expression level was highly expressed in the synovia, in the peripheral blood mononuclear cells and in the drain lymph node (DLN) tissues of adjuvant-induced arthritis rats in comparison with naïve animals. Downregulation of A3AR expression was noted upon treatment with IB-MECA. Analysis of synovia and DLN protein extracts revealed a decreased expression level of PI3K, PKB/Akt, IKK, NF-κB and tumor necrosis factor alpha, known to affect survival and apoptosis of inflammatory cells, whereas the caspase-3 level was upregulated. Taken together, high A3AR expression is found in the synovia, in the immune cells in the DLN and in peripheral blood mononuclear cells. IB-MECA, an orally bioavailable molecule, activates the A3AR, inducing receptor downregulation and the initiation of a molecular mechanism that involves de-regulation of the PI3K-NF-κB signaling pathway. As a result, a potent antiinflammatory effect manifested in the improvement of the disease clinical score and pathological score occurs. The finding that the A3AR expression level in the peripheral blood mononuclear cells and in the DLN reflects the receptor status in the remote inflammatory site suggests use of the A3AR as a follow-up biomarker.
AB - The anti-inflammatory effect of adenosine was previously found to be mediated via activation of the A3 adenosine receptor (A3AR). The aim of the present study was to decipher the molecular mechanism involved with the inhibitory effect of IBMECA, an A3AR agonist, on adjuvant-induced arthritis. The adjuvant-induced arthritis rats responded to IB-MECA treatment with a decrease in the clinical score and the pathological score of the disease. The response to IB-MECA was neutralized by the antagonist MRS 1220, confirming that the efficacy of the synthetic agonist was A3AR mediated. The A3AR protein expression level was highly expressed in the synovia, in the peripheral blood mononuclear cells and in the drain lymph node (DLN) tissues of adjuvant-induced arthritis rats in comparison with naïve animals. Downregulation of A3AR expression was noted upon treatment with IB-MECA. Analysis of synovia and DLN protein extracts revealed a decreased expression level of PI3K, PKB/Akt, IKK, NF-κB and tumor necrosis factor alpha, known to affect survival and apoptosis of inflammatory cells, whereas the caspase-3 level was upregulated. Taken together, high A3AR expression is found in the synovia, in the immune cells in the DLN and in peripheral blood mononuclear cells. IB-MECA, an orally bioavailable molecule, activates the A3AR, inducing receptor downregulation and the initiation of a molecular mechanism that involves de-regulation of the PI3K-NF-κB signaling pathway. As a result, a potent antiinflammatory effect manifested in the improvement of the disease clinical score and pathological score occurs. The finding that the A3AR expression level in the peripheral blood mononuclear cells and in the DLN reflects the receptor status in the remote inflammatory site suggests use of the A3AR as a follow-up biomarker.
UR - http://www.scopus.com/inward/record.url?scp=70449564383&partnerID=8YFLogxK
U2 - 10.1186/ar1887
DO - 10.1186/ar1887
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 16507132
AN - SCOPUS:70449564383
SN - 1478-6354
VL - 8
JO - Arthritis Research and Therapy
JF - Arthritis Research and Therapy
IS - 1
M1 - R33
ER -