TY - JOUR
T1 - The phase transition in random graphs
T2 - A simple proof
AU - Krivelevich, Michael
AU - Sudakov, Benny
PY - 2013/9
Y1 - 2013/9
N2 - The classical result of Erdos and Rényi asserts that the random graph G(n,p) experiences sharp phase transition around \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1}{n}\end{align*} \end{document} - for any ε > 0 and \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1-\epsilon}{n}\end{align*} \end{document}, all connected components of G(n,p) are typically of size Oε(log n), while for \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1+\epsilon}{n}\end{align*} \end{document}, with high probability there exists a connected component of size linear in n. We provide a very simple proof of this fundamental result; in fact, we prove that in the supercritical regime \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1+\epsilon}{n}\end{align*} \end{document}, the random graph G(n,p) contains typically a path of linear length. We also discuss applications of our technique to other random graph models and to positional games.
AB - The classical result of Erdos and Rényi asserts that the random graph G(n,p) experiences sharp phase transition around \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1}{n}\end{align*} \end{document} - for any ε > 0 and \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1-\epsilon}{n}\end{align*} \end{document}, all connected components of G(n,p) are typically of size Oε(log n), while for \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1+\epsilon}{n}\end{align*} \end{document}, with high probability there exists a connected component of size linear in n. We provide a very simple proof of this fundamental result; in fact, we prove that in the supercritical regime \documentclass{article}\usepackage{mathrsfs}\usepackage{amsmath}\pagestyle{empty}\begin{document}\begin{align*}p=\frac{1+\epsilon}{n}\end{align*} \end{document}, the random graph G(n,p) contains typically a path of linear length. We also discuss applications of our technique to other random graph models and to positional games.
KW - Giant component
KW - Long paths
KW - Phase transition
KW - Random graphs
UR - http://www.scopus.com/inward/record.url?scp=84880950465&partnerID=8YFLogxK
U2 - 10.1002/rsa.20470
DO - 10.1002/rsa.20470
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84880950465
SN - 1042-9832
VL - 43
SP - 131
EP - 138
JO - Random Structures and Algorithms
JF - Random Structures and Algorithms
IS - 2
ER -