The mechanism of the oxidation of ascorbate and Mn2+ by chloroplasts: The role of the radical superoxide

B. L. Epel, J. Neumann

Research output: Contribution to journalArticlepeer-review


1. 1. The mechanism of the photooxidation of ascorbate and of Mn2+ by isolated chloroplasts was reinvestigated. 2. 2. Our results suggest that ascorbate or Mn2+ oxidation is the result of the Photosystem I-mediated production of the radical superoxide, and that neither ascorbate nor Mn2+ compete with water as electron donors to Photosystem II nor affect the rate of electron transport through the two photosystems: The radical superoxide is formed as a result of the autooxidation of the reduced forms of low potential electron acceptors, such as methylviologen, diquat, napthaquinone, or ferredoxin. 3. 3. In the absence of ascorbate or Mn2+ the superoxide formed dismutases either spontaneously or enzymatically producing O2 and H2O2. In the presence of ascorbate or Mn2+, however, the superoxide is reduced to H2O2 with no formation of O2. Consequently, in the absence of reducing compounds, in the reaction H2O to low potential acceptor one O2 (net) is taken up per four electrons transported where as in the presence of ascorbate, Mn2+ or other suitable reductants up to three molecules O2 can be taken up per four electrons transported. 4. 4. This interpretation is supported by the following observations: (a) in a chloroplast-free model system containing NADPH and ferredoxin-NADP reductase, methylviologen can be reduced to a free radical which is autooxidizable in the presence of O2; the addition of ascorbate or Mn2+ to this system results in a two fold stimulation of O2 uptake, with no stimulation of NADPH oxidation. The stimulation of O2 uptake is inhibited by the enzyme superoxide dismutase; (b) the stimulation of light-dependent O2 uptake in the system H2O → methylviologen in chloroplasts is likewise inhibited by the enzyme superoxide dismutase. 5. 5. In Class II chloroplasts in the system H2O → NADP upon the addition of ascorbate or Mn2+ an apparent inhibition of O2 evolution is observed. This is explained by the interaction of these reductants with the superoxide formed by the autooxidation of ferredoxin, a reaction which proceeds simultaneously with the photoreduction of NADP. Such an effect usually does not occur in Class I chloroplasts in which the enzyme superoxide dismutase is presumably more active than in Class II chloroplasts. 6. 6. It is proposed that since in the Photosystem I-mediated reaction from reduced 2,4-dichlorophenolindophenol to such low potential electron acceptor as methylviologen, superoxide is formed and results in the oxidation of the ascorbate present in the system, the ratio ATP 2e in this system (when the rate of electron flow is based on the rate of O2 uptake) should be revised in the upward direction.

Original languageEnglish
Pages (from-to)520-529
Number of pages10
JournalBiochimica et Biophysica Acta - Bioenergetics
Issue number3
StatePublished - 14 Dec 1973


Dive into the research topics of 'The mechanism of the oxidation of ascorbate and Mn2+ by chloroplasts: The role of the radical superoxide'. Together they form a unique fingerprint.

Cite this