The lunar space elevator

Jerome Pearson*, Eugene Levin, John Oldson, Harry Wykes

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

20 Scopus citations

Abstract

This paper examines lunar space elevators, a concept originated by the lead author, for lunar development. Lunar space elevators are flexible structures connecting the lunar surface with counterweights located beyond the L1 or L2 Lagrangian points in the Earth-moon system. A lunar space elevator on the moon's near side, balanced about the L1 Lagrangian point, could support robotic climbing vehicles to release lunar material into high Earth orbit. A lunar space elevator on the moon's far side, balanced about L2, could provide nearly continuous communication with an astronomical observatory on the moon's far side, away from the optical and radio interference from the Earth. Because of the lower mass of the moon, such lunar space elevators could be constructed of existing materials instead of carbon nanotubes, and would be much less massive than the Earth space elevator. We review likely spots for development of lunar surface operations (south pole locations for water and continuous sunlight, and equatorial locations for lower delta-V), and examine the likely payload requirements for Earth-to-moon and moon-to-Earth transportation. We then examine its capability to launch large amounts of lunar material into high Earth orbit, and do a top-level system analysis to evaluate the potential payoffs of lunar space elevators.

Original languageEnglish
Pages3133-3143
Number of pages11
StatePublished - 2004
Externally publishedYes
EventInternational Astronautical Federation - 55th International Astronautical Congress 2004 - Vancouver, Canada
Duration: 4 Oct 20048 Oct 2004

Conference

ConferenceInternational Astronautical Federation - 55th International Astronautical Congress 2004
Country/TerritoryCanada
CityVancouver
Period4/10/048/10/04

Fingerprint

Dive into the research topics of 'The lunar space elevator'. Together they form a unique fingerprint.

Cite this