The largest hole in sparse random graphs

Nemanja Draganić, Stefan Glock*, Michael Krivelevich

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We show that for any (Formula presented.) with (Formula presented.), with high probability, the size of a largest induced cycle in the random graph (Formula presented.) is (Formula presented.). This settles a long-standing open problem in random graph theory.

Original languageEnglish
Pages (from-to)666-677
Number of pages12
JournalRandom Structures and Algorithms
Volume61
Issue number4
DOIs
StatePublished - Feb 2022

Funding

FundersFunder number
USA-Israel BSF2018267
Walter Haefner Foundation
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Eidgenössische Technische Hochschule Zürich
Israel Science Foundation1261/17
ETH Zürich Foundation

    Keywords

    • hole
    • induced path
    • random graph

    Fingerprint

    Dive into the research topics of 'The largest hole in sparse random graphs'. Together they form a unique fingerprint.

    Cite this