The Largest Hole in Sparse Random Graphs

Nemanja Draganić, Stefan Glock*, Michael Krivelevich

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

We show that for d≥ d0(ϵ), with high probability, the size of a largest induced cycle in the random graph G(n, d/n) is (2±ϵ)ndlogd. This settles a long-standing open problem in random graph theory.

Original languageEnglish
Title of host publicationExtended Abstracts EuroComb 2021
Subtitle of host publicationEuropean Conference on Combinatorics, Graph Theory and Applications
EditorsJaroslav Nešetřil, Juanjo Rué, Guillem Perarnau, Oriol Serra
PublisherSpringer Science and Business Media Deutschland GmbH
Pages45-49
Number of pages5
ISBN (Electronic)978-3-030-83823-2
ISBN (Print)978-3-030-83822-5
DOIs
StatePublished - 2021

Publication series

NameTrends in Mathematics
Volume14
ISSN (Print)2297-0215
ISSN (Electronic)2297-024X

Keywords

  • Hole
  • Induced path
  • Random graph
  • Second moment method

Fingerprint

Dive into the research topics of 'The Largest Hole in Sparse Random Graphs'. Together they form a unique fingerprint.

Cite this