TY - JOUR
T1 - The interplay between structural and functional connectivity in early stage Parkinson's disease patients
AU - Droby, Amgad
AU - Nosatzki, Shai
AU - Edry, Yariv
AU - Thaler, Avner
AU - Giladi, Nir
AU - Mirelman, Anat
AU - Maidan, Inbal
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/11/15
Y1 - 2022/11/15
N2 - The mechanisms underlying cognitive disturbances in Parkinson's disease (PD) are poorly understood but likely to depend on the ongoing degenerative processes affecting structural and functional connectivity (FC). This pilot study examined patterns of FC alterations during a cognitive task using EEG and structural characteristics of white matter (WM) pathways connecting these activated regions in early-stage PD. Eleven PD patients and nine healthy controls (HCs) underwent EEG recording during an auditory oddball task and MRI scans. Source localization was performed and Gaussian mixture model was fitted to identify brain regions with high power during task performance. These areas served as seed regions for connectivity analysis. FC among these regions was assessed by measures of magnitude squared coherence (MSC), and phase-locking value (PLV), while structural connectivity was evaluated using fiber tracking based on diffusion tensor imaging (DTI). The paracentral lobule (PL), superior parietal lobule (SPL), superior and middle frontal gyrus (SMFG), parahippocampal gyrus, superior and middle temporal gyri (STG, MTG) demonstrated increased activation during task performance. Compared to HCs, PD showed lower FC between SMFG and PL and between SMFG and SPL in MSC (p = 0.012 and p = 0.036 respectively). No significant differences between the groups were observed in PLV and the measured DTI metrics along WM tracts. These findings demonstrate that in early PD, cognitive performance changes might be attributed to FC alterations, suggesting that FC is affected early on in the degenerative process, whereas structural damage is more prominent in advanced stages as a result of the disease burden accumulation.
AB - The mechanisms underlying cognitive disturbances in Parkinson's disease (PD) are poorly understood but likely to depend on the ongoing degenerative processes affecting structural and functional connectivity (FC). This pilot study examined patterns of FC alterations during a cognitive task using EEG and structural characteristics of white matter (WM) pathways connecting these activated regions in early-stage PD. Eleven PD patients and nine healthy controls (HCs) underwent EEG recording during an auditory oddball task and MRI scans. Source localization was performed and Gaussian mixture model was fitted to identify brain regions with high power during task performance. These areas served as seed regions for connectivity analysis. FC among these regions was assessed by measures of magnitude squared coherence (MSC), and phase-locking value (PLV), while structural connectivity was evaluated using fiber tracking based on diffusion tensor imaging (DTI). The paracentral lobule (PL), superior parietal lobule (SPL), superior and middle frontal gyrus (SMFG), parahippocampal gyrus, superior and middle temporal gyri (STG, MTG) demonstrated increased activation during task performance. Compared to HCs, PD showed lower FC between SMFG and PL and between SMFG and SPL in MSC (p = 0.012 and p = 0.036 respectively). No significant differences between the groups were observed in PLV and the measured DTI metrics along WM tracts. These findings demonstrate that in early PD, cognitive performance changes might be attributed to FC alterations, suggesting that FC is affected early on in the degenerative process, whereas structural damage is more prominent in advanced stages as a result of the disease burden accumulation.
KW - Cognition
KW - DTI
KW - EEG
KW - Functional connectivity
KW - Parkinson's disease
UR - http://www.scopus.com/inward/record.url?scp=85140275134&partnerID=8YFLogxK
U2 - 10.1016/j.jns.2022.120452
DO - 10.1016/j.jns.2022.120452
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 36265263
AN - SCOPUS:85140275134
SN - 0022-510X
VL - 442
JO - Journal of the Neurological Sciences
JF - Journal of the Neurological Sciences
M1 - 120452
ER -