TY - GEN
T1 - The influence of nonlinear air drag on microbeam response for noncontact atomic force microscopy
AU - Gottlieb, O.
AU - Maimon, R.
AU - Hoffman, A.
AU - Edrei, R.
AU - Wu, W.
AU - Shavit, A.
PY - 2008
Y1 - 2008
N2 - In this paper we formulate and analyze a continuum model for the vibration of a noncontacting atomic force microscope (AFM) microbeam in air that consistently incorporates nonlinear geometric and inertia effects, localized atomic interaction, viscoelastic damping and quadratic drag. We investigate a controlled set of experiments that include both free vibration decay of a large Silicon beam and forced vibration response of an AFM Silicon microbeam mapping a Silicon sample for various initial interaction distances. Nonlinear frequency and damping backbone curves are obtained from free vibration decay data and equivalent damping ratios are deduced from forced vibration frequency response. Estimation of the system linear viscoelastic parameters and nonlinear drag parameters is enabled by comparison of the experimental backbone curves with those of a nonlinear modal dynamical system deduced from the continuum model. The calibration results without sample interaction include both a slight softening effect for small amplitude response due to nonlinear inertia and viscoelastic damping and a hardening effect for large amplitude response governed by nonlinear geometric effects and drag. Validation of the nonlinear model is enabled by comparison with the measured forced vibration AFM frequency response below the dynamic jump-to-contact threshold.
AB - In this paper we formulate and analyze a continuum model for the vibration of a noncontacting atomic force microscope (AFM) microbeam in air that consistently incorporates nonlinear geometric and inertia effects, localized atomic interaction, viscoelastic damping and quadratic drag. We investigate a controlled set of experiments that include both free vibration decay of a large Silicon beam and forced vibration response of an AFM Silicon microbeam mapping a Silicon sample for various initial interaction distances. Nonlinear frequency and damping backbone curves are obtained from free vibration decay data and equivalent damping ratios are deduced from forced vibration frequency response. Estimation of the system linear viscoelastic parameters and nonlinear drag parameters is enabled by comparison of the experimental backbone curves with those of a nonlinear modal dynamical system deduced from the continuum model. The calibration results without sample interaction include both a slight softening effect for small amplitude response due to nonlinear inertia and viscoelastic damping and a hardening effect for large amplitude response governed by nonlinear geometric effects and drag. Validation of the nonlinear model is enabled by comparison with the measured forced vibration AFM frequency response below the dynamic jump-to-contact threshold.
UR - http://www.scopus.com/inward/record.url?scp=44849131977&partnerID=8YFLogxK
U2 - 10.1115/DETC2007-35225
DO - 10.1115/DETC2007-35225
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:44849131977
SN - 0791848027
SN - 9780791848029
SN - 0791848027
SN - 9780791848029
T3 - 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
SP - 975
EP - 983
BT - 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
T2 - 21st Biennial Conference on Mechanical Vibration and Noise, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007
Y2 - 4 September 2007 through 7 September 2007
ER -