The impact of the Impeller's hub design on the performance and blood damage in a microaxial mechanical circulatory support device – A numerical study

Yuval Gabso, Moshe Rosenfeld, Idit Avrahami*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

This study uses CFD methods to investigate the effects of the impeller's geometry on the hemodynamic characteristics, pump performance, and blood damage parameters, in a percutaneous microaxial Mechanical Circulatory Support (MCS) device. The numerical simulations employ the steady state Reynolds-Averaged Navier-Stokes approximation using the SST k−ω turbulent model. Three different impeller models are examined with different hub conversion angles (α = 0, 3 and 5). The analysis includes 23 cases for different pressure heads (Δp = 60–80 mmHg) and angular velocities (ω = 30–52 kRPM). The obtained flow rate is compared between the cases to assess the effect of the impeller's design and working conditions on the pump performance. The comparative risk of shear-induced platelet activation is estimated using the statistical median of the stress-accumulation values calculated along streamlines. The risk of hemolysis is estimated using the average exposure time to shear stress above a threshold (τ > 425 Pa). The results reveal that the shape of the impeller's hub has a great impact on the flow patterns, performance, and risk of blood damage, as well as the angular velocity. The highest flow rate (Q = 3.7 L/min) and efficiency (η = 11.3 %) were achieved using a straight hub (α = 0). Similarly, for the same condition of flow and pressure, the straight hub impeller has the lowest blood damage risk parameters. This study shed light on the effect of pump design on the performance and risk of blood damage, indicating the roles of the hub shape and angular velocity as dominant parameters.

Original languageEnglish
Article number108695
JournalComputers in Biology and Medicine
Volume179
DOIs
StatePublished - Sep 2024

Funding

FundersFunder number
Ariel University
Ministry of Science and Technology, Israel
Applied Sciences and Engineering
Melanoma Institute Australia

    Keywords

    • Computational fluid dynamics
    • Hemolysis
    • Impeller design
    • Mechanical circulatory support device
    • Platelets activation

    Fingerprint

    Dive into the research topics of 'The impact of the Impeller's hub design on the performance and blood damage in a microaxial mechanical circulatory support device – A numerical study'. Together they form a unique fingerprint.

    Cite this