TY - GEN
T1 - The impact of small faults on seismic impedance inversion
AU - Xiang, K.
AU - Landa, E.
N1 - Publisher Copyright:
© 81st EAGE Conference and Exhibition 2019. All rights reserved.
PY - 2019/6/3
Y1 - 2019/6/3
N2 - Impedance inversion is one of the most efficient tools to predict and characterize oil and gas reservoirs. Small faults have the ability to reveal the high-resolution information on the target reservoir. However, the impedance information of small faults is always hidden during standard inversion process. Instead, diffracted wavefield indicate high-resolution information beyond reflected wavefield, yet it is biased by reflection-oriented migration. Usually, in the standard inversion scheme, the input is the migrated data and the impedance of small faults is distorted. Therefore, a novel approach is proposed to improve impedance inversion results using the unmigrated data and diffracted wavefield. The input data for inversion is a zero-offset section with identified diffraction events. Forward modelling, designed for the impedance inversion, includes the classical specular reflection plus asymptotic diffraction modelling schemes. A synthetic model, with the fault of half of the wavelength, shows the validation of this novel approach to improve the resolution and accuracy of impedance inversion.
AB - Impedance inversion is one of the most efficient tools to predict and characterize oil and gas reservoirs. Small faults have the ability to reveal the high-resolution information on the target reservoir. However, the impedance information of small faults is always hidden during standard inversion process. Instead, diffracted wavefield indicate high-resolution information beyond reflected wavefield, yet it is biased by reflection-oriented migration. Usually, in the standard inversion scheme, the input is the migrated data and the impedance of small faults is distorted. Therefore, a novel approach is proposed to improve impedance inversion results using the unmigrated data and diffracted wavefield. The input data for inversion is a zero-offset section with identified diffraction events. Forward modelling, designed for the impedance inversion, includes the classical specular reflection plus asymptotic diffraction modelling schemes. A synthetic model, with the fault of half of the wavelength, shows the validation of this novel approach to improve the resolution and accuracy of impedance inversion.
UR - http://www.scopus.com/inward/record.url?scp=85088200812&partnerID=8YFLogxK
U2 - 10.3997/2214-4609.201901209
DO - 10.3997/2214-4609.201901209
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85088200812
T3 - 81st EAGE Conference and Exhibition 2019
BT - 81st EAGE Conference and Exhibition 2019
PB - EAGE Publishing BV
T2 - 81st EAGE Conference and Exhibition 2019
Y2 - 3 June 2019 through 6 June 2019
ER -