The functional connectome in obsessive-compulsive disorder: resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium

Willem B. Bruin*, Yoshinari Abe, Pino Alonso, Alan Anticevic, Lea L. Backhausen, Srinivas Balachander, Nuria Bargallo, Marcelo C. Batistuzzo, Francesco Benedetti, Sara Bertolin Triquell, Silvia Brem, Federico Calesella, Beatriz Couto, Damiaan A.J.P. Denys, Marco A.N. Echevarria, Goi Khia Eng, Sónia Ferreira, Jamie D. Feusner, Rachael G. Grazioplene, Patricia GrunerJoyce Y. Guo, Kristen Hagen, Bjarne Hansen, Yoshiyuki Hirano, Marcelo Q. Hoexter, Neda Jahanshad, Fern Jaspers-Fayer, Selina Kasprzak, Minah Kim, Kathrin Koch, Yoo Bin Kwak, Jun Soo Kwon, Luisa Lazaro, Chiang Shan R. Li, Christine Lochner, Rachel Marsh, Ignacio Martínez-Zalacaín, Jose M. Menchon, Pedro S. Moreira, Pedro Morgado, Akiko Nakagawa, Tomohiro Nakao, Janardhanan C. Narayanaswamy, Erika L. Nurmi, Jose C.Pariente Zorrilla, John Piacentini, Maria Picó-Pérez, Fabrizio Piras, Federica Piras, Christopher Pittenger, Janardhan Y.C. Reddy, Daniela Rodriguez-Manrique, Yuki Sakai, Eiji Shimizu, Venkataram Shivakumar, Blair H. Simpson, Carles Soriano-Mas, Nuno Sousa, Gianfranco Spalletta, Emily R. Stern, S. Evelyn Stewart, Philip R. Szeszko, Jinsong Tang, Sophia I. Thomopoulos, Anders L. Thorsen, Tokiko Yoshida, Hirofumi Tomiyama, Benedetta Vai, Ilya M. Veer, Ganesan Venkatasubramanian, Nora C. Vetter, Chris Vriend, Susanne Walitza, Lea Waller, Zhen Wang, Anri Watanabe, Nicole Wolff, Je Yeon Yun, Qing Zhao, Wieke A. van Leeuwen, Hein J.F. van Marle, Laurens A. van de Mortel, Anouk van der Straten, Ysbrand D. van der Werf, Honami Arai, Irene Bollettini, Rosa Calvo Escalona, Ana Coelho, Federica Colombo, Leila Darwich, Martine Fontaine, Toshikazu Ikuta, Jonathan C. Ipser, Asier Juaneda-Seguí, Hitomi Kitagawa, Gerd Kvale, Mafalda Machado-Sousa, Astrid Morer, Takashi Nakamae, Jin Narumoto, Joseph O’Neill, Sho Okawa, Eva Real, Veit Roessner, Joao R. Sato, Cinto Segalàs, Roseli G. Shavitt, Dick J. Veltman, Kei Yamada, Wieke A. van Leeuwen, Hein J.F. van Marle, Laurens A. van de Mortel, Anouk van der Straten, Ysbrand D. van der Werf, Odile A. van den Heuvel, Guido A. van Wingen*, Paul M. Thompson, Dan J. Stein, Odile A. van den Heuvel, Guido A. van Wingen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

Current knowledge about functional connectivity in obsessive-compulsive disorder (OCD) is based on small-scale studies, limiting the generalizability of results. Moreover, the majority of studies have focused only on predefined regions or functional networks rather than connectivity throughout the entire brain. Here, we investigated differences in resting-state functional connectivity between OCD patients and healthy controls (HC) using mega-analysis of data from 1024 OCD patients and 1028 HC from 28 independent samples of the ENIGMA-OCD consortium. We assessed group differences in whole-brain functional connectivity at both the regional and network level, and investigated whether functional connectivity could serve as biomarker to identify patient status at the individual level using machine learning analysis. The mega-analyses revealed widespread abnormalities in functional connectivity in OCD, with global hypo-connectivity (Cohen’s d: -0.27 to -0.13) and few hyper-connections, mainly with the thalamus (Cohen’s d: 0.19 to 0.22). Most hypo-connections were located within the sensorimotor network and no fronto-striatal abnormalities were found. Overall, classification performances were poor, with area-under-the-receiver-operating-characteristic curve (AUC) scores ranging between 0.567 and 0.673, with better classification for medicated (AUC = 0.702) than unmedicated (AUC = 0.608) patients versus healthy controls. These findings provide partial support for existing pathophysiological models of OCD and highlight the important role of the sensorimotor network in OCD. However, resting-state connectivity does not so far provide an accurate biomarker for identifying patients at the individual level.

Original languageEnglish
Pages (from-to)4307-4319
Number of pages13
JournalMolecular Psychiatry
Volume28
Issue number10
DOIs
StatePublished - Oct 2023
Externally publishedYes

Funding

FundersFunder number
Agència de Gestió d'Ajuts Universitaris i de Recerca
South African Medical Research Council
Spanish Ministry of Universities
Fondo de Investigaciones Sanitarias
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Michael Smith Health Research BC
Biogen
Heidehof Stiftung
Ministero della Salute
Obsessive-Compulsive Foundation
Government of India
Brain and Behavior Research Foundation
National Alliance for Research on Schizophrenia and Depression
National Research Foundation
European Regional Development Fund
International OCD Foundation
Japan Agency for Medical Research and DevelopmentJP22dm0307002, JP22dm0307008
National Natural Science Foundation of China81871057, 82171495, 82071518
Clinical and Public Health Research CenterIA/CRC/19/1/610005
National Institute on Aging Research ProjectR01AG058854
Japan Society for the Promotion of Science21K07547, 22K15766, 19K03309, 18K15523, 22H01090, 16K04344, 21K03084, 22K07598
Department of Science and Technology, Ministry of Science and Technology, IndiaIFA12-LSBM-26, SR/S0/HS/0016/2011
AUGUR2017SGR 1247
Netherlands Brain Foundation2010(1
Instituto de Salud Carlos IIICM21/00278, PI18/00856
Helse Vest Health Authority911754, 911880
Fundació la Marató de TV3091810
Department of Biotechnology, Ministry of Science and Technology, IndiaBT/ PR13334/Med/30/259/2009, BT/06/IYBA/2012
European CommissionMAZ/2021/11
Hartmann Müller-Stiftung für Medizinische Forschung1460
IRCCS Fondazione Santa LuciaRC19-20-21-22/A
Deutsche ForschungsgemeinschaftVE 892/2-1, KO 3744/11-1
Conselho Nacional de Desenvolvimento Científico e Tecnológico303754/2018-4
Consejería de Salud y Familias, Junta de AndalucíaPI11/01419
Key Technologies Research and Development Program2022YFE0103700
National Institute of Neurological Disorders and StrokeRO1NS107513
Fundação para a Ciência e a TecnologiaUIDP/50026/2020, UIDB/50026/2020, NORTE-01-0145-FEDER-000023, NORTE-01-0145-FEDER-000013, 2020.07946
Amsterdam NeuroscienceCIA-2019-03-A
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung320030_130237
European Social FundFI17/00294, PI19/01171
Else Kröner-Fresenius-Stiftung2017_A101
ZonMw016.156.318, 165.610.002, 916.86.038, 917.15.318
National Institute of Mental HealthR01MH121520, R01MH104648, R01MH116147, K24MH121571, R01MH117601, R21MH093889, R01MH085900, R21MH101441, R01MH111794, R01AG059874, R33MH107589, P41EB015922, 5R01MH116038, R01MH081864, R01MH126981, R01MH123163, K23 MH115206, R01MH121246, R01MH126213
The Wellcome Trust DBT India AllianceIA/CPHE/18/1/503956, 500236/Z/11/Z
National Institutes of HealthU54 EB020403

    Fingerprint

    Dive into the research topics of 'The functional connectome in obsessive-compulsive disorder: resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium'. Together they form a unique fingerprint.

    Cite this